首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A localized triangular differential quadrature method is introduced in this article. Not only is the existing limitation on the approximation order in the triangular differential quadrature eliminated but also the convergent rate is enhanced in the new method. As an example to validate the new method, elastic torsion of prismatic shaft with regular polygonal cross section is studied and excellent agreement with available theoretical and analytic solutions is reached. It is believed that the present work further widens the applicability of the triangular differential quadrature technique. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 682–692, 2003  相似文献   

2.
Based on the principle of minimum potential energy and the differential quadrature rule, novel weak form quadrature element method is proposed. Different from the existing ones, expanded Chebyshev grid points are used as the element nodes. A simple but general way is proposed to compute the strains at the integration points explicitly by using the differential quadrature rule. For illustration and verification, quadrature bar and beam elements are established. Several examples are given. Numerical results indicate that the proposed quadrature element method allows a longer time step as compared to elements with other nodes and is an accurate and efficient method for structural analysis.  相似文献   

3.
Two new efficient algorithms are developed to approximate the derivatives of sufficiently smooth functions. The new techniques are based on differential quadrature method with quartic B-spline bases as test functions. To obtain the weighting coefficients of differential quadrature method (DQM), we use the midpoints of a uniform partition mixed with near-boundary grid points. This enables us to obtain the weighting coefficients without adding the new extra relations. By obtaining the error bounds, it is proved that the method in its classic form is non-optimal. Then, some new weighting coefficients are constructed to obtain higher accuracy. By obtaining the error bounds, it is proved that the new algorithm is superconvergent. Afterwards, by defining some new symbols, we find a way to approximate the partial derivatives of multivariate functions. Also, some approximations are constructed to the mixed derivatives of multivariate functions. Finally, the applicability of the methods is examined by solving some well-known problems of partial differential equations. Some examples of 2D and 3D biharmonic, Poisson, and convection-diffusion equations are solved and compared to the existing methods to show the efficiency of the proposed algorithms.  相似文献   

4.
The differential quadrature element method (DQEM) has been proposed. The element weighting coefficient matrices are generated by the differential quadrature (DQ) or generic differential quadrature (GDQ). By using the DQ or GDQ technique and the mapping procedure the governing differential or partial differential equations, the transition conditions of two adjacent elements and the boundary conditions can be discretized. A global algebraic equation system can be obtained by assembling all of the discretized equations. This method can convert a generic engineering or scientific problem having an arbitrary domain configuration into a computer algorithm. The DQEM irregular element torsion analysis model is developed.  相似文献   

5.
In this paper, the free vibration of a two-dimensional functionally graded circular cylindrical shell is analyzed. The equations of motion are based on the Love’s first approximation classical shell theory. The spatial derivatives of the equations of motion and boundary conditions are discretized by the methods of generalized differential quadrature (GDQ) and generalized integral quadrature (GIQ). Two kinds of micromechanics models, viz. Voigt and Mori–Tanaka models are used to describe the material properties. To validate the results, comparisons are made with the solutions for FG cylindrical shells available in the literature. The results of this study show that the natural frequency of the material can be modified in order to meet the expected results through manipulation of the constituent volume fractions. A comprehensive comparison is then drawn between ordinary and 2-D FG cylindrical shells.  相似文献   

6.
The differential quadrature method based on cosine expansion is applied to obtain numerical solutions of the RLW equation. The propagation of single solitary wave is studied to validate the efficiency of the algorithm. Then, test problems including interaction of two and three solitary waves, undulation, and evolution of solitary waves are implemented. Solutions are compared with earlier results. Discrete conservation quantities are computed for test experiments. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

7.
This paper addresses the free vibration problem of multilayered shells with embedded piezoelectric layers. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. The shell has arbitrary end boundary conditions. For the simply supported boundary conditions closed-form solution is given by making the use of Fourier series expansion. Applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free end conditions. Natural frequencies of the hybrid laminated shell are presented by solving the eigenfrequency equation which can be obtained by using edges boundary condition in this state equation. Accuracy and convergence of the present approach is verified by comparing the natural frequencies with the results obtained in the literatures. Finally, the effect of edges conditions, mid-radius to thickness ratio, length to mid-radius ratio and the piezoelectric thickness on vibration behaviour of shell are investigated.  相似文献   

8.
This paper is concerned with a generalization of a functional differential equation known as the pantograph equation which contains a linear functional argument. In this article, a new spectral collocation method is applied to solve the generalized pantograph equation with variable coefficients on a semi-infinite domain. This method is based on Jacobi rational functions and Gauss quadrature integration. The Jacobi rational-Gauss method reduces solving the generalized pantograph equation to a system of algebraic equations. Reasonable numerical results are obtained by selecting few Jacobi rational–Gauss collocation points. The proposed Jacobi rational–Gauss method is favorably compared with other methods. Numerical results demonstrate its accuracy, efficiency, and versatility on the half-line.  相似文献   

9.
The nonlinear Korteweg–de Vries (KdVE) equation is solved numerically using both Lagrange polynomials based differential quadrature and cosine expansion‐based differential quadrature methods. The first test example is travelling single solitary wave solution of KdVE and the second test example is interaction of two solitary waves, whereas the other three examples are wave production from solitary waves. Maximum error norm and root mean square error norm are computed, and numerical comparison with some earlier works is done for the first two examples, the lowest four conserved quantities are computed for all test examples. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

10.
In this article, we introduce a new, simple, and accurate computational technique for one‐dimensional Burgers' equation. The idea behind this method is the use of polynomial based differential quadrature (PDQ) for the discretization of both time and space derivatives. The quasilinearization process is used for the elimination of nonlinearity. The resultant scheme has simulated for five classic examples of Burgers' equation. The simulation outcomes are validated through comparison with exact and secondary data in the literature for small and large values of kinematic viscosity. The article has deduced that the proposed scheme gives very accurate results even with less number of grid points. The scheme is found to be very simple to implement. Hence, it applies to any domain requires quick implementation and computation.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2023–2042, 2017  相似文献   

11.
轴向运动粘弹性板的横向振动特性   总被引:1,自引:0,他引:1  
研究了轴向运动粘弹性矩形薄板的动力特性和稳定性问题.从二维粘弹性微分型本构关系出发,建立了轴向运动粘弹性板的运动微分方程.采用微分求积法,对四边简支、一对边简支一对边固支两种边界条件下粘弹性板的无量纲复频率进行了数值计算.分析了薄板的长宽比、无量纲运动速度及材料的无量纲延滞时间对其横向振动及稳定性的影响.  相似文献   

12.
Long-time asymptotic stability and convergence properties for the numerical solution of a Volterra equation of parabolic type are studied.The methods are based on the first-second order backward difference methods.The memory term is approximated by the comvolution quadrature and the interpolant quadrature.Discretization of the spatial partial differential operators by the finite element method is also considered.  相似文献   

13.
Based on the theory of divisors, an effective theoretical algorithm designed previously by the authors for constructing good quadrature formulas with a Korobov grid (i.e., an algorithm for finding optimal coefficients) is used to develop a computer search method that produces tables of optimal coefficients giving more accurate integration error estimates with a smaller number of nodes than in all previously known cases.  相似文献   

14.
The technique of differential quadrature for the solution of partial differential equations, introduced by Bellman et al., is extended and generalized to encompass partial differential equations involving multiple space variables. Approximation formulae for a variety of first and second order partial derivatives and typical weighting coefficients are presented. Application of these formulae is demonstrated on the solution of the convection-diffusion equation for the two- and three-dimensional space dependent cases and for both the transient and steady-state dispersion of inert, neutrally buoyant pollutants from continuous sources into an unbounded atmosphere.  相似文献   

15.
We present an elegant algorithm for stably and quickly generating the weights of Fejér’s quadrature rules and of the Clenshaw–Curtis rule. The weights for an arbitrary number of nodes are obtained as the discrete Fourier transform of an explicitly defined vector of rational or algebraic numbers. Since these rules have the capability of forming nested families, some of them have gained renewed interest in connection with quadrature over multi-dimensional regions. AMS subject classification (2000) 65D32, 65T20, 65Y20  相似文献   

16.
More general and stronger estimations of bounds for the fundamental functions of Hermite interpolation of high order on an arbitrary system of nodes on infinite intervals are given. Based on this result, convergence of Gaussian quadrature formulas for Riemann–Stieltjes integrable functions on an arbitrary system of nodes on infinite intervals is discussed.  相似文献   

17.
A rational differential quadrature method in irregular domains (RDQMID) is investigated to deal with a kind of singularly perturbed problems with boundary layers. Through a transformation, the boundary layer, which may be not straight, is transformed into a segment of a line parallel to one of the Cartesian axes. The rational differential quadrature method (RDQM) is applied to discretize the governing equation. Finally, a direct expansion method of the boundary conditions (DEMBC) is raised to deal with the boundary conditions. Numerical experiments show that RDQMID is of high accuracy, efficiency and easy to programme.  相似文献   

18.
Anewmethod called the full rational differential quadrature method is presented to deal with two dimensional linear and nonlinear hyperbolic problems in semi‐unbounded irregular domains. The spacial and temporal discretizations are both implemented by the rational differential quadrature method (RDQM). The RDQM, proven to be A‐stable (Chen and Tanaka, Comput Mech 28 (2002) 331–338) in the temporal discretization, is much more efficient than the finite difference schemes widely used in earlier works. In addition, the irregular boundary conditions are treated by the direct expansion method(DEM). Numerical experiments show that the present method is of high efficiency and easy to implement. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

19.
In this paper, a high accuracy and rapid convergence hybrid approach is developed for two-dimensional static analyses of circular arches with different boundary conditions. The method essentially consists of a layerwise technique in the thickness direction in conjunction with differential quadrature method (DQM) in the axial direction. Hence, the high accuracy and fast convergence of DQM with generality of layerwise formulations for modeling the transverse deformations of arbitrary laminated composite thick arches are combined. This results in superior accuracy with fewer degrees of freedom than conventional finite element method (FEM) or finite difference method (FDM). The convergence behavior of the method is shown and to verify its accuracy, the results are compared with those obtained based on the first order shear deformation Reissner–Naghdi type shell theory and also higher order shear deformation theory. The effects of opening angles, ply angle, boundary conditions, and thickness-to-length ratio on the stress and displacement components are studied.  相似文献   

20.
In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams-Bashforth methods for solving initial-value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton-Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号