首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A composite model in the context of a production-inventory system   总被引:4,自引:0,他引:4  
In the context of a manufacturing situation, the procurement of multiple input items has been considered along with the production of a finished item. A composite model has been developed for a generalized environment in which the fractional backordering is included. The model can be used for a variety of situations. The output parameters are provided for possible combinations of input parameters, which can be used directly and are also suitable for further analysis.  相似文献   

2.
In this work, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The governing equations are taken in the context of the theory of two-temperature generalized thermoelasticity. A linear temperature ramping function is used to more realistically model thermal loading of the half-space surface. The medium is assumed initially quiescent. Laplace and Fourier transform techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem of a half-space subjected to ramp-type heating. The inverse Fourier transforms are obtained analytically while the inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the ramping parameter of heating.  相似文献   

3.
Nils Karajan  Wolfgang Ehlers 《PAMM》2007,7(1):4020003-4020004
The determination of the theoretically introduced material parameters is always a big issue, especially in computational biomechanics. In this context it is difficult to obtain the appropriate intervertebral disc (IVD) specimens within 24 h post decease and to perform reliable experiments on them, respectively. A complex test setup is needed for most of the cases and the measured results are very ‘patient specific’. On the other hand, the parameters obtained from literature are often also not reliable, because they are widespread, the experimental setup is not clearly described or was deficient. Moreover, as soft tissues generally exhibit a coupled dissipative behaviour, it is often not possible to measure these effects independently. Hence, the parameters have to be identified by inverse computations, i. e., axial compression, bending or torsion of a whole motion segment. The goal of this contribution is to proceed from an extended biphasic model and a set of suitable material parameters obtained from literature, in order to find the influence of certain parameters on a numerical compression-bending experiment of a L4-L5 motion segment. Finally, a comment on how the respective parameters should be determined is given. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Many optimal experimental designs depend on one or more unknown model parameters. In such cases, it is common to use Bayesian optimal design procedures to seek designs that perform well over an entire prior distribution of the unknown model parameter(s). Generally, Bayesian optimal design procedures are viewed as computationally intensive. This is because they require numerical integration techniques to approximate the Bayesian optimality criterion at hand. The most common numerical integration technique involves pseudo Monte Carlo draws from the prior distribution(s). For a good approximation of the Bayesian optimality criterion, a large number of pseudo Monte Carlo draws is required. This results in long computation times. As an alternative to the pseudo Monte Carlo approach, we propose using computationally efficient Gaussian quadrature techniques. Since, for normal prior distributions, suitable quadrature techniques have already been used in the context of optimal experimental design, we focus on quadrature techniques for nonnormal prior distributions. Such prior distributions are appropriate for variance components, correlation coefficients, and any other parameters that are strictly positive or have upper and lower bounds. In this article, we demonstrate the added value of the quadrature techniques we advocate by means of the Bayesian D-optimality criterion in the context of split-plot experiments, but we want to stress that the techniques can be applied to other optimality criteria and other types of experimental designs as well. Supplementary materials for this article are available online.  相似文献   

5.
In this paper, structural identifiability from input–output data is considered. A mathematical model to describe a dialysis process based on linear dynamic systems is used and the identifiability of this model is tested. The problem of estimating the parameters and obtaining conditions to assure the uniqueness of the parameters is solved. Some conditions to obtain attractive points for the considered model are given, and finally, the stability problem is analyzed.  相似文献   

6.
Anja Schlömerkemper 《PAMM》2006,6(1):507-508
In earlier work [3], a Sachs and a Taylor bound on the transformation yield stress in shape memory polycrystals were derived in the context of a variational model. The aim of this article is to compare the Sachs with the Taylor bound for cubic-toorthorhombic phase transformations under biaxial loading, where the material parameters are chosen explicitly (CuAlNi). It turns out that the gap between the two bounds can be quite large depending on the underlying texture and the loading direction. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior disturbance by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of the patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear as a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximation results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for system excitation and data collection.  相似文献   

8.
Variable displacement vane pumps are used in a variety of applications, most prominently in the context of modern automotive vehicles. Minimal models capturing the main dynamic effects of such pumps have remained scarce. In this contribution, a minimal model taking into account the force effects from line pressure exposure and dead volume compression and expansion is presented. The pump model is autonomous and allows for a simple integration in simulation models for which an example in the form of a non-smooth hydraulic circuit is given. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The prediction and simulation of material behavior by finite element methods has become indispensable. Furthermore, various phenomena in forming processes lead to highly differing results. In this work, we have investigated the process chain on a cross-shaped cup in cooperation between the Institute of Applied Mechanics (IFAM) of the RWTH Aachen and the Institute of Forming Technology and Lightweight Construction (IUL) of the TU Dortmund. A viscoplastic material model based on the multiplicative decomposition of the deformation gradient in the context of hyperelasticity has been used [1,2]. The finite strain constitutive model combines nonlinear kinematic and isotropic hardening and is derived in a thermodynamically consistent setting. This anisotropic viscoplastic model is based on the multiplicative decomposition of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong-Frederick kinematic hardening. The constitutive equations of the material model are integrated in an explicit manner and implemented as a user material subroutine in the commercial finite element package LS-DYNA with the electromagnetical module. The aim of the work is to show the increasing formability of the sheet by combining quasi-static deep drawing processes with high speed electromagnetic forming. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Due to the exponential growth in computing power, numerical modelling techniques method have gained an increasing amount of interest for engineering and design applications. Nowadays, the deterministic finite element (FE) method, an efficient tool to accurately solve the Partial Differential Equations (PDE) that govern most real-world problems, has become an indispensable tool for an engineer in various design stages. A more recent trend herein is to use the ever increasing computing power incorporate uncertainty and variability, which is omnipresent is all real-live applications, into these FE models. Several advanced techniques for incorporating either variability between nominally identical parts or spatial variability within one part into the FE models, have been introduced in this context. For the representation of spatial variability on the parameters of an FE model in a possibilistic context, the theory of Interval Fields (IF) was proven to show promising results. Following this approach, variability in the input FE model is introduced as the superposition of base vectors, depicting the spatial ‘patterns’, which are scaled by interval factors, which represent the actual variability. Application of this concept, however, requires identification of the governing parameters of these interval fields, i. e. the base vectors and interval scalars. Recent work of the authors therefore was focussed on finding a solution to the inverse problem, where the spatial uncertainty on the output side of the model is known from measurement data, but the spatial variability on the input parameters is unknown. Based on an a priori knowledge on the constituting base vectors of the interval field, the simulated output of the IFFEM computation is compared to measured data, and the input parameters are iteratively adjusted in order to minimize the discrepancy between the variability in simulation and measurement data. This discrepancy is defined based on geometric properties of the convex sets of both measurement and simulation data. However, the robustness of this methodology with respect to the size of the measurement data set that is used for the identification, as yet remains unclear. This paper therefore is focussed on the investigation of this robustness, by performing the identification on different measurement sets, depicting the same variability in the dynamic response of a simple FE model, which contain a decreasing amount of measurement replica. It was found that accurate identification remains feasible, even under a limited amount of measurement replica, which is highly relevant in the context of a non-probabilistic representation of variability in the FE model parameters. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The degeneration of articular cartilage is one of the most common causes of pain and disability in middle-aged and older people. In this context, osteoarthritis is a well-known clinical syndrome related to cartilage degeneration. The degeneration of normal articular cartilage is not simply the result of aging and mechanical wear. Pathological loads may also increase the risk of degeneration of normal joints, and individuals who have an abnormal joint anatomy or inadequate muscle strength probably have a greater risk of degenerative joint disease. The goal of this contribution is to investigate the influence of cartilage degeneration on the stress pattern at the cartilage-bone interface. In this connection, articular cartilage is described as a highly anisotropic and heterogeneous charged biphasic solid-fluid aggregate in the framework of the Theory of Porous Media (TPM). After calibration of the model under physiological loading conditions, the results of a sensitivity analysis of the model parameters are presented. Realistic boundary conditions are applied on the cartilage surface of the femoral head obtained from multibody dynamics calculations. Use is made of the Hertzian contact theory for the contact pressure distribution. The applicability of a new rendition technique to visualise simulation results based on a standardised stereographic projection of the von Mises stresses along the curved cartilage-bone interface is introduced. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR.  相似文献   

13.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

14.
We consider a class of kinetic models of chemotaxis with two positive non-dimensional parameters coupled to a parabolic equation of the chemo-attractant. If both parameters are set equal zero, we have the classical Keller–Segel model for chemotaxis. We prove global existence of solutions of this two-parameters kinetic model and prove convergence of this model to models of chemotaxis with global existence when one of these two parameters is set equal zero. In one case, we find as a limit model a kinetic model of chemotaxis while in the other case we find a perturbed Keller–Segel model with global existence of solutions.  相似文献   

15.
This paper focuses on combinatorial feasibility and optimization problems that arise in the context of parameter identification of discrete dynamical systems. Given a candidate parametric model for a physical system and a set of experimental observations, the objective of parameter identification is to provide estimates of the parameter values for which the model can reproduce the experiments. To this end, we define a finite graph corresponding to the model, to each arc of which a set of parameters is associated. Paths in this graph are regarded as feasible only if the sets of parameters corresponding to the arcs of the path have nonempty intersection. We study feasibility and optimization problems on such feasible paths, focusing on computational complexity. We show that, under certain restrictions on the sets of parameters, some of the problems become tractable, whereas others are NP-hard. In a similar vein, we define and study some graph problems for experimental design, whose goal is to support the scientist in optimally designing new experiments.  相似文献   

16.
The efficient and accurate calculation of sensitivities of the price of financial derivatives with respect to perturbations of the parameters in the underlying model, the so-called ‘Greeks’, remains a great practical challenge in the derivative industry. This is true regardless of whether methods for partial differential equations or stochastic differential equations (Monte Carlo techniques) are being used. The computation of the ‘Greeks’ is essential to risk management and to the hedging of financial derivatives and typically requires substantially more computing time as compared to simply pricing the derivatives. Any numerical algorithm (Monte Carlo algorithm) for stochastic differential equations produces a time-discretization error and a statistical error in the process of pricing financial derivatives and calculating the associated ‘Greeks’. In this article we show how a posteriori error estimates and adaptive methods for stochastic differential equations can be used to control both these errors in the context of pricing and hedging of financial derivatives. In particular, we derive expansions, with leading order terms which are computable in a posteriori form, of the time-discretization errors for the price and the associated ‘Greeks’. These expansions allow the user to simultaneously first control the time-discretization errors in an adaptive fashion, when calculating the price, sensitivities and hedging parameters with respect to a large number of parameters, and then subsequently to ensure that the total errors are, with prescribed probability, within tolerance.  相似文献   

17.
Cables are complex components consisting of a multi-layer structure and various materials. The structural setup includes for example conducting wires, isolating shields and protecting sheaths. This leads to several inelastic effects under large deformations like pull-out of wires, delamination of layers or friction between the constituents. The materials used in cables belong to different material classes and consequently show different behavior under load. Elastoplastic behavior has to be expected for metallic wires, whereas polymer layers behave viscoelastically. The combination of these inelastic effects caused by the structure and constituents of cables motivates the inclusion of inelasticity in the material model on a phenomenological level. Since cables are flexible, slender structures, they can be described physically correctly by the theory of Cosserat rods. In this context, the constitutive equations are formulated in terms of the sectional quantities. The related model parameters have to be determined in suitable experiments. As cables undergo large multiaxial deformations in applications, uniaxial experiments are not sufficient for their characterization. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Ryder (Ref. 1) has developed a simple two-sector macroeconomic model incorporatinglearning by doing as a determinant of the growth of productivity-enhancing experience and its effect on foreign trade. In this paper, optimal foreign trade and capital allocation policies are determined, in the context of the above model, for ranges of the international trade price not considered by Ryder. An extension of Ryder's model to include a dual trade price structure is briefly discussed. A specific numerical example is used to ascertain the configuration of the various features occurring in the extremal fields at different price levels.  相似文献   

19.
In this work, we have presented a peristaltic flow of a Williamson model in an asymmetric channel. The governing equations of Williamson model in two dimensional peristaltic flow phenomena are constructed under long wave length and low Reynolds number approximations. A regular perturbation expansion method is used to obtain the analytical solution of the non-linear problem. The expressions for stream function, pressure gradient and pressure rise have been computed. The pertinent features of various physical parameters have been discussed graphically. It is observed that, (the non-dimensional Williamson parameter) for large We , the curves of the pressure rise are not linear but for very small We it behave like a Newtonian fluid.  相似文献   

20.
The Gaussian hidden Markov model (HMM) is widely considered for the analysis of heterogenous continuous multivariate longitudinal data. To robustify this approach with respect to possible elliptical heavy-tailed departures from normality, due to the presence of outliers, spurious points, or noise (collectively referred to as bad points herein), the contaminated Gaussian HMM is here introduced. The contaminated Gaussian distribution represents an elliptical generalization of the Gaussian distribution and allows for automatic detection of bad points in the same natural way as observations are typically assigned to the latent states in the HMM context. Once the model is fitted, each observation has a posterior probability of belonging to a particular state and, inside each state, of being a bad point or not. In addition to the parameters of the classical Gaussian HMM, for each state we have two more parameters, both with a specific and useful interpretation: one controls the proportion of bad points and one specifies their degree of atypicality. A sufficient condition for the identifiability of the model is given, an expectation-conditional maximization algorithm is outlined for parameter estimation and various operational issues are discussed. Using a large-scale simulation study, but also an illustrative artificial dataset, we demonstrate the effectiveness of the proposed model in comparison with HMMs of different elliptical distributions, and we also evaluate the performance of some well-known information criteria in selecting the true number of latent states. The model is finally used to fit data on criminal activities in Italian provinces. Supplementary materials for this article are available online  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号