首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

2.
ZnO films were deposited on thermally oxidized SiO2/p-type Si (100) substrates and glass substrates by DC magnetron sputtering using a metal Zn target. Three types of samples were prepared with various O2/(Ar + O2) ratios (O2 partial pressure) of 20%, 50%, and 80%. The properties of these ZnO thin films were investigated using X-ray diffraction (XRD), optical transmittance, atomic force microscopy (AFM), and spectroscopic ellipsometry in the spectral region of 1.7–3.1 eV. The structural and optical properties of ZnO thin films were affected by O2 partial pressure. Relationships between crystallinity, the ZnO surface roughness layer, and the refractive index (n) were investigated with varying O2 partial pressure. It was shown that the spectroscopic ellipsometry extracted parameters well represented the ZnO thin film characteristics for different O2 partial pressures.  相似文献   

3.
This article presents the results on the growth and characterization of BaSnF4 thin films on glass substrates prepared by pulsed laser deposition technique. The structural results of BaSnF4 thin film carried out by glancing angle X-ray diffraction technique indicates the formation of the film with similar structure (tetragonal, P4/nmm) to the bulk target material. The absorption coefficient and band gap of the film is determined by suitable analysis of the transmittance spectra. The transport properties of the thin films are studied using impedance spectroscopy in the temperature range of 323–573 K. The frequency-dependent imaginary part of impedance plot shows that the conductivity relaxation is non-Debye in nature. The scaling behavior of the imaginary part of impedance at various frequencies indicates temperature-independent relaxation behavior.  相似文献   

4.
Films of meso-substituted derivatives of tetraphenylporphine substituted in the paraor ortho-positions of the phenyl rings with alkoxy groups (-OC4H9 or -OC16H33) and films of their metal complexes are prepared using the Langmuir-Schaefer (LS) method. The effect of the molecular structure on the supramolecular organization of thin films is determined. The films are obtained by transferring layers of the compounds from the surface of the water onto silicon substrates using the Langmuir-Schaefer technique. The structures of the one-component LS films of the investigated compounds are studied by the small-angle X-ray scattering method, and also the lattice periodicities are calculated. The supramolecular organization of the meso-substituted tetraphenylporphine derivatives is modeled and refined by means of the X-ray diffraction method. When Ni or Cu serve as chelating metal, it is found that the macrocycle-macrocycle interaction is so large that it leads to violation of the molecular linearity, i.e., the lateral substituents are folded toward the macrocycle, reducing the area occupied by the structural units.  相似文献   

5.
SnO2 thin films doped with various manganese concentrations were prepared on glass substrates by sol–gel dip coating method. The decomposition procedure of compounds produced by alcoholysis reactions of tin and manganese chlorides was studied by thermogravimetric analysis (TGA). The effects of Mn doping on structural, morphological, electrical and optical properties of prepared films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Hall effect measurement, Fourier Transform Infrared (FTIR) spectral analysis, UV–Vis spectrophotometry, and photoluminescence (PL) spectroscopy. The results of the X-ray diffraction show that the samples are crystalline with a tetragonal rutile structure and the grain size decreases with increasing the doping concentration. The SEM and AFM images demonstrate that the surface morphology of the films was affected from the manganese incorporation. The Sn1?x Mn x O2 thin films exhibited electrically p-type behavior in doping level above x=0.035 and electrical resistivity increases with increase in Mn doping. The optical transmission spectra show a shift in the position of absorption edge towards higher wavelength (lower energy). The optical constants (refractive index and extinction coefficient) and the film thickness were determined by spectral transmittance and using a numerical approximation method. The oscillator and dispersion energies were calculated using the Wemple–DiDomenico dispersion model. The estimated optical band gap is found to decrease with higher manganese doping. The room-temperature PL measurements illustrate the decrease in intensity of the emission lines when content of Mn is increased in Mn-doped SnO2 thin films.  相似文献   

6.
GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Shottky junctions. The electric analysis allowed us to determine the n factor and the barrier height Фb0 parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.  相似文献   

7.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

8.
Thin films of Cu2S on opaque gold layers and quartz substrates at the temperature of 393 K were deposited by a thermal evaporation technique. The surface morphology of the Cu2S thin films at different thicknesses is investigated by AFM. It is seen that all the films are composed of highly coordinated spherical nano-sized particles well adhered to the substrate. The transmittance and reflectance spectra of Cu2S thin films on the quartz substrate were recorded by a UV–visible spectrophotometer. The results show that the thermally evaporated Cu2S thin films have the characteristic transmittance and reflectance suitable for optoelectronic applications. The stoichiometry and surface morphology of a grown Cu2S thin film were confirmed by energy-dispersive X-ray spectroscopy (EDAX) and scanning electron microscopy (SEM), respectively. The dependence of the refractive index and the extinction coefficient on the photon energy for both the surface film and the opaque gold layer have been determined by ellipsometry. From the spectral behaviour of the absorption coefficient at two distinct absorption regions, a dual-band scheme of optical absorption for a Cu2S thin film is described. The indirect and direct edges of Cu2S are found to be about at 0.91 eV and 2.68 eV, respectively.  相似文献   

9.
VO2 thin films are grown on glass substrates by pulsed laser deposition using vanadium metal as a target. In this study, a ZnO thin film was used as a buffer layer for the growth of VO2 thin films on glass substrates. X-ray diffraction studies showed that the VO2 thin film had b-axis preferential orientation on a c-axis oriented ZnO buffer layer. The thickness of the ZnO buffer layer and the oxygen pressure during VO2 deposition were optimized to grow highly b-axis oriented VO2 thin films. The metal-insulator transition properties of the VO2 film samples were investigated in terms of infrared reflectance and electrical resistance with varying temperatures.  相似文献   

10.
Cu2ZnSn(SxS1?x)4 (CZTSSe) thin films were prepared by annealing a stacked precursor prepared on Mo coated glass substrates by the sputtering technique. The stacked precursor thin films were prepared from Cu, SnS2, and ZnS targets at room temperature with stacking orders of Cu/SnS2/ZnS. The stacked precursor thin films were annealed using a tubular two zone furnace system under a mixed N2 (95%) + H2S (5%) + Se vaporization atmosphere at 580 °C for 2 h. The effects of different Se vaporization temperature from 250 °C to 500 °C on the structural, morphological, chemical, and optical properties of the CZTSSe thin films were investigated. X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy results showed that the annealed thin films had a single kesterite crystal structure without a secondary phase. The 2θ angle position for the peaks from the (112) plane in the annealed thin films decreased with increasing Se vaporization temperature. Energy dispersive X-ray results showed that the presence of Se in annealed thin films increased from 0 at% to 42.7 at% with increasing Se vaporization temperatures. UV–VIS spectroscopy results showed that the absorption coefficient of all the annealed thin films was over 104 cm?1 and that the optical band gap energy decreased from 1.5 eV to 1.05 eV with increasing Se vaporization temperature.  相似文献   

11.
The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH3COO)2·Cd·2H2O, SeO2, and FeCl3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, Eg from 1.95 to 1.65 eV.  相似文献   

12.
In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique using polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results confirm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is characterized by using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the presence of Ti–O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visible region. The current–voltage (IV) curve of the TiO2 thin films shows a nearly linear behavior with 45 mΩ?cm of electrical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.  相似文献   

13.
Lead Telluride (PbTe) films of different thickness were prepared onto precleaned glass substrates under the pressure of 2?×?10?5 Torr by thermal evaporation. X-ray diffraction technique, scanning electron microscopy, and current–voltage characteristics were used to characterize the films. The structural analysis of the films was carried using X-ray diffractometer. The surface morphology was analyzed by using scanning electron microscope. The dc electrical conduction mechanism in vacuum-evaporated Al/PbTe/Al thin film sandwich system in the thickness range 500–5,000 Å at different temperature (303–483 K) was found to be a modified Poole–Frenkel type. The results of variation of activation energy with applied voltage and thickness are discussed.  相似文献   

14.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

15.
La2/3Sr1/3MnO3?δ thin films were deposited by laser ablation on MgO substrates under low oxygen pressure cool down. Their structural and magnetic properties are presented. The magnetic and electrical resistivity measurements indicate a reduction of the Curie and the metal–insulator transition temperatures due to the formation of magnetic inhomogeneneous films, where clusters of a metallic phase are mixed in a magnetically disordered insulating matrix. By a low-angle X-ray reflectivity study we show that the thin films are chemically inhomogeneous with an oxygen deficiency in bulk of the film when compared with the film/air interfacial region.  相似文献   

16.
The hydrogen doped ZnO (ZnO:H) thin films were deposited on quartz glass substrates by radio frequency magnetron sputtering. The doping characteristics of ZnO:H thin films with varied hydrogen flow ratio were investigated. At low hydrogen flow ratio (H2/(H2+Ar)≤0.02), the ZnO:H thin films exhibited dominant (002) peaks from X-ray diffraction and the lattice constants became smaller. The particles were mainly a columnar structure. The particles’ size became smaller, and the island-like structure appeared on the thin films surface. In addition, the low resistivity properties of ZnO:H thin films was ascribed to the increase of the carriers concentration and carriers mobility; When the hydrogen flow ratio was more than 0.02 (M≥0.02), two absorption bands at 1400–1800 cm?1 and 3200–3900 cm?1 were observed from the FT-IR spectra, which indicated that the ZnO:H thin films had typical Zn–H bonding, O–H bonding (hydroxyl), and Zn–H–O bonding (like-hydroxyl). The scanning electron microscope (SEM) results show that a large number of hydroxyl agglomeration formed an island-like structure on the thin films surface. The absorption peak at about 575 cm?1 in the Raman spectra indicated that oxygen vacancies (VO) defects were produced in the process of high hydrogen doping. In this condition, the low resistivity properties of ZnO:H thin films were mainly due to the increasing electron concentration resulted from VO. Meanwhile, the Raman absorption peaks at approximately 98 cm?1 and 436 cm?1 became weaker, and the (002) XRD diffraction peak quenched and the lattice constants increased, which shows that the ZnO:H thin films no longer presented a typical ZnO hexagonal wurtzite structure. With the increasing of hydrogen flow ratio, the optical transmittance of ZnO:H thin films in the ultraviolet band show a clear Burstein–Moss shift effect, which further explained that electron concentration was increased due to the increasing VO with high hydrogen doping concentration. Moreover, the optical reflectance of the thin films decreased, indicating the higher roughness of the films surface. It was noteworthy that etching effect of H plasma was obvious in the process of heavy hydrogen doping.  相似文献   

17.
This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I–V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.  相似文献   

18.
Nearly stoichiometric thin films of In49Se48Sn3 were deposited at room temperature, by conventional thermal evaporation of the presynthesized materials, onto precleaned glass substrates. The microstructural studies on the as-deposited and annealed films, using transmission electron microscopy and diffraction (TEMD), revealed that the as-deposited films are amorphous in nature, while those annealed at 498 K are crystalline. The optical properties of the investigated films were determined from the transmittance and reflectance data, in the spectral range 650-2500 nm. An analysis of the optical absorption spectra revealed a non-direct energy gap characterizing the amorphous films, while both allowed and forbidden direct energy gaps characterized the crystalline films. The electrical resistance of the deposited films was carried out during heating and cooling cycles in the temperature range 300-600 K. The results show an irreproducible behavior, while after crystallization the results become reproducible. The analysis of the temperature dependence of the resistance (ln(R) vs. 1000/T) for crystalline films shows two straight lines corresponding to both extrinsic and intrinsic conduction. The room temperature I-V characteristics of the as-deposited films sandwiched between similar Ag metal electrodes shows an ohmic behavior, while non-ohmic behavior attributed to space charge limited conduction has been observed when the films are sandwiched between dissimilar Ag/Al metal electrodes.  相似文献   

19.
Zinc sulfide thin films were prepared on glass substrates at room temperature using a chemical bath deposition method. The obtained films were annealed at temperatures ranging from 100 to 500 °C in steps of 100 °C for 1 h. The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray analysis (EDX), optical absorption spectra, and electrical measurements. X-ray diffraction analysis indicates that the deposited films have an amorphous structure, but after being annealed at 500 °C, they change to slightly polycrystalline. The optical constants such as the refractive index (nr), the extinction coefficient (k), and the real (ε1) and imaginary (ε2) parts of the dielectric constant are calculated depending on the annealing temperature. Aside from the ohmic characteristics of the I-V curve, a nonlinear I-V curve owing to the Schottky contact is also found, and the barrier heights (?bn) for Au/n-ZnS and In/n-ZnS heterojunctions are calculated. The conductivity type was identified by the hot-probe technique.  相似文献   

20.
(1 ? x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT) thin films have been deposited on quartz substrates using pulsed laser deposition (PLD). Crystalline microstructure of the deposited PMN–PT thin films has been investigated with X-ray diffraction (XRD). Optical transmission spectroscopy and Raman spectroscopy are used to characterize optical properties of the deposited PMN–PT thin films. The results show that the PMN–PT thin films of perovskite structure have been formed, and the crystalline and optical properties of the PMN–PT thin films can be improved as increasing the annealing temperature to 750 °C, but further increasing the annealing temperature to 950 °C may lead to a degradation of the crystallinity and the optical properties of the PMN–PT thin films. In addition, a weak second harmonic intensity (SHG) has been observed for the PMN–PT thin film formed at the optimum annealing temperature of 750 °C according to Maker fringe method. All these suggest that the annealing temperature has significant effect on the structural and optical properties of the PMN–PT thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号