首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The curves of intracenter luminescence decay for Mn2+ ions in the Cd0.5Mn0.5Te semiconductor solid solution, obtained in a low-temperature experiment, have been simulated by the Monte Carlo method. The features of the kinetics of the 2-eV band in the time interval where significant nonexponentiality of relaxation at different points of the emission band profile manifests itself, as well the integral kinetics and energy relaxation, have been considered. Migration of ion excitations and concentration quenching (which was previously disregarded) are considered to be the main mechanisms determining the kinetic curve formation. It was established that excitation by 2.34-eV photons leads to both selective (intracenter) and band excitation of Mn2+ ions. Comparison of the results of numerical simulation and experiment showed that the characteristic values of the migration and quenching rates (W m and W q , respectively) are close in magnitude and W q, m ≈ 0.1/τ, where τ is the lifetime at the long-wavelength band wing with the exponential kinetics. The estimated quantum yield (0.56) indicates significant influence of the concentration quenching on the 2-eV luminescence quantum yield in Cd1 ? x Mn x Te and Zn1 ? x Mn x S crystals with a high concentration of Mn2+ ions.  相似文献   

2.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

3.
A time-resolved cathodo-and photoluminescence study of nanostructural modifications of Al2O3 (powders and ceramics) excited by heavy-current electron beams, as well as by pulsed synchrotron radiation, is reported. It was found that Al2O3 nanopowders probed before and after Fe+ ion irradiation have the same phase composition (the γ-phase/δ-phase ratio is equal to 1), an average grain size equal to ~17 nm, and practically the same set of broad cathodoluminescence (CL) bands peaking at 2.4, 3.2, and 3.8 eV. It was established that Al2O3 nanopowders exhibit fast photoluminescence (PL) (a band at 3.2 eV), whose decay kinetics is described by two exponential stages (τ1 = 0.5 ns, τ2 = 5.5 ns). Three bands, at 5.24, 6.13, and 7.44 eV, were isolated in the excitation spectrum of the fast PL. Two alternate models of PL centers were considered, according to which the 3.2-eV luminescence either originates from radiative relaxation of the P? centers (anion-cation vacancy pairs) or is due to the formation of surface analogs of the F+ center (F S + -type centers). In addition to the fast luminescence, nano-Al2O3 was found to produce slow luminescence in the form of a broad band peaking at 3.5 eV. The excitation spectrum of the 3.5-eV luminescence obtained at T = 13 K exhibits two doublet bands with maxima at 7.8 and 8.3 eV. An analysis of the luminescent properties of nanostructural and single-crystal Al2O3 suggests that the slow luminescence of nanopowders at 3.5 eV is due to radiative annihilation of excitons localized near structural defects.  相似文献   

4.
Silicon isotope separation has been performed utilizing the infrared multiphoton dissociation (IRMPD) of Si2F6 irradiated with two-frequency CO2 laser lights. The two-frequency excitation method improved the separation efficiency by keeping the high enrichment factors. For example, Si2F6 with the 28Si fraction of 99.4% was obtained at 40.0% dissociation of Si2F6 after the simultaneous irradiation of 100 pulses with 966.23 cm-1 photons (0.089 J/cm2) and 954.55 cm-1 photons (0.92 J/cm2), while 1000 pulses were needed to obtain 99.0% of 28Si at 27.2% dissociation in the case of single frequency irradiation at 954.55 cm-1 (0.92 J/cm2). The single-step enrichment factors of 29Si and 30Si increased with increasing Si2F6 pressure. The reason for this enhancement has been discussed in terms of the rotational and vibrational relaxations by collisions with ambient gases. PACS 42.62.Cf; 82.30.Lp; 82.50.Bc  相似文献   

5.
Si4+ was introduced to the lattice of LiEuMo2O8 by solid-state reaction to prepare a new kind of red-emitting LiEuMo2−xSixO8 (0<x≤0.5) phosphors. The introduction of Si4+ ion caused the distortion and slight shrinking of the unit cell of LiEuMo2O8 material, and the blue-shift of the charge-transfer-absorption (CTA) band of LiEuMo2O8. Photoluminescence excitation (PLE) and photoluminescence measurements showed that the introduction of Si4+ was able to enhance the excitation efficiency of LiEuMo2O8 in NUV spectral region (360-400 nm). Consequently the red emission of LiEuMo2O8 phosphor was improved by 30% at x=0.2 under 395 nm light excitation, without loss of color purity. The enhanced red emission of LiEuMo2−xSixO8 was discussed in terms of the blue-shift of CTA band and the relaxation of parity-forbidden selection rules for trivalent europium luminescent centers.  相似文献   

6.
We report the modification of molecular beam epitaxy grown strain-relaxed single crystalline Si1−xGex layers for x=0.5 and 0.7 as a result of irradiation with 100 MeV Au ions at 80 K. The samples were structurally characterized by Rutherford backscattering spectrometry/channeling, transmission electron microscopy (TEM) and high-resolution X-ray diffraction before and after irradiation with fluences of 5×1010, 1×1011 and 1×1012 ions/cm2, respectively. No track formation was detected in both the samples from TEM studies and finally, the crystalline to amorphous phase transformation at 1×1012 ions/cm2 was examined to be higher for Si0.3Ge0.7 layers compared to Si0.5Ge0.5 layers.  相似文献   

7.
A series of phosphors with the composition Y3−xMnxAl5−xSixO12 (x=0, 0.025, 0.050, 0.075, 0.150, 0.225, 0.300) were prepared with solid state reactions. The X-ray powder diffraction analysis of samples shows that the substitution of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance decrease to a certain extent. The emission spectra show that Mn2+ in Y3Al5O12 emits yellow-orange light in a broad band. With the increment of substitution content, the emission intensity of the phosphors increases firstly then decreases subsequently, and the emission peak moves to longer wavelength. Afterglow spectra and decay curves show that all the Mn2+ and Si4+ co-doped samples emit yellow-orange light with long afterglow after the irradiation of ultraviolet light. The longest afterglow time is 18 min. Thermoluminescence measurement shows that there exist two kinds of traps with different depth of energy level and their depth decreases with the increment of substitution content.  相似文献   

8.
We have investigated ion desorption from adsorbed methane following keV He+ ion irradiation. The thickness of the adsorbed layer was precisely controlled. For mono-layered methane, only monomer ions (CHx+) were desorbed by 1 keV He+ ion irradiation. On the other hand, a large number of cluster ions (CnHx+) up to n = 20 were desorbed from multi-layered film. Among cluster ions, molecular ions with CC bonds were found, which indicates that chemical bonds are newly formed by ion irradiation. Based on the results for thickness dependences of the mass spectral patterns, it was elucidated that the monomer ions are desorbed from the top surface layer through single electron excitation. While the cluster ions are formed mainly in the inside of the layers along the nuclear track due to the high-density electronic excitation, which is produced by nuclear collision between incident He+ ions and frozen molecules.  相似文献   

9.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

10.
Electronic as well as ionic conducting properties for oxyapatite-type solid electrolytes based on lanthanum silicate, La9.333 + xSi6O26 + 1.5x (LSO) were investigated in the oxygen-excess region (x > ca. 0.3). We have found that the oxygen excess-type LSO (OE-LSO), namely La10Si6O27 on weighted basis, exhibited high conductivity, and substitution of the Si-site of LSO with some dopants (Mn+) had a positive effect toward the conducting property. Furthermore, it was also found that addition of a very small amount of iron ions into the M-doped OE-LSO, La10(Si6-yMn+y)O27-(2-0.5n)y, improved its conductivity. On the other hand, replacement of the La-site with various ions for La10(Si6-yMn+y)O27-(2-0.5n)y did little to improve conductivity. The electronic transport numbers for Al-doped OE-LSO with Fe-addition, (1-α){La10(Si5.8Al0.2)O26.9}-α(FeOγ), evaluated with the Hebb-Wagner polarization method were very low: i.e., 1.1 × 10− 3 and 2.9 × 10− 3 under P(O2) = 1.1 × 104 Pa at 1073 K for α = 0.00 and 0.005, respectively. Conductivity for each sample was unchanged under humidified atmosphere at 1073 K sustained for over 50 h, revealing that both compositions were chemically stable. It was concluded that 0.995{La10(Si5.8Al0.2)O26.9}-0.005(FeOγ) is suitable for the fuel cell electrolytes because of its high and almost pure ionic conductivity, and its good chemical stability under humidified as well as reducing conditions.  相似文献   

11.
Spatially separated defects created by photons with energies 6–8 eV in alkali-earth fluoride crystals doped with cerium are investigated with the help of thermoluminescence. Measuring the spectra of creation of Vk and H peaks of thermostimulated luminescence inBaF 2:Ce3+. we demonstrate that photons with energies higher than 6eV induce H centers (self-trapped holes captured by interstitialF ions), whereas the formation of self-trapped holes begins on exposure to photons with energies greater than 7 eV. The influence of photoionization on theCe 3+ luminescence inBaF 2, SrF2, CaF2, andCeF 3 crystals is investigated in the range of photon energies 4–8 eV. An exponentialCe 3+-emisson decay was observed for excitation energy lying in the range 4–6 eV. Slow and fast decay components were observed under excitation by photons with energies higher than 6 eV. We believe that the slow and fast components are due to the tunnel recombination of trapped electrons with hole centers. A. P. Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 43–49, March, 2000.  相似文献   

12.
Using 50 MeV Li3?+? ion irradiation, the change induced in polycrystalline ferrites Li0.5(1?+?x)Ti x Al0.1Fe2.4???1.5x O4 (x = 0.0 to 0.3, step–0.1)[LTAF] and Li0.5(1?+?x)Ti x Cr0.1Fe2.4???1.5x O4 (x = 0.0 to 0.3, step–0.1; LTCF) in the electronic stopping power regime is studied. Both the systems were irradiated with the same fluence of 5 × 1013 ions/cm2. The modifications of the structural and magnetic properties are studied by means of X-ray diffraction (XRD), magnetization, 57Fe Mössbauer spectroscopy and low field a. c. susceptibility. The contrast in the role of Ti4?+? in the presence of Al3?+? and Cr3?+? causing the formation of paramagnetic centres through Swift Heavy Ion Irradiation (SHII) induced cation rearrangement has been revealed through the comparative Mössbauer signatures of both the systems. The hyperfine interaction parameters deduced through Mössbauer spectra are also discussed before and after irradiation. The observed reduction in the saturation magnetic moment and Curie temperature after irradiation supports the partial formation of paramagnetic centres and rearrangement of cations in the lattice.  相似文献   

13.
Crystals of lutetium gadolinium garnet solid solutions (Lu1 − x Gd x )Al5O12 (0 ≤ x ≤ 0.6) doped with Ce3+ and Pr3+ ions have been prepared by the horizontal directional crystallization method, and their optical and luminescence properties have been investigated. It has been established that the introduction of gadolinium into the lutetium garnet lattice leads to a decrease in the antisite luminescence (LuAl centers) in the UV spectral range and to sensitization of the Ce3+ ion luminescence. By contrast, the presence of gadolinium results in the quenching of the Pr3+ luminescence due to the nonradiative excitation transfer from Pr3+ ions to Gd3+ ions.  相似文献   

14.
Eu2+-doped Sr3Al2O6 (Sr3−xEuxAl2O6) was synthesized by a solid-state reaction under either H2 and N2 atmosphere or CO atmosphere. When H2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu2+ ion. The relationship between the emission wavelengths and the occupation of Eu2+ at different crystallographic sites was studied. The preferential substitution of Eu2+ into different Sr2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips.  相似文献   

15.
The luminescence of LaY3+ and ScY3+ and ScAl3+ centers created by lanthanum and scandium ions at Y3+ and Al3+ cation sites of YAlO3 perovskite lattice was investigated. The features of emission of excitons localized at the mentioned centers in YAlO3:La and YAlO3:Sc single-crystalline films were analyzed by means of time-resolved emission spectroscopy and luminescence decay kinetics measurements under excitation by synchrotron radiation at 9 and 300 K.  相似文献   

16.
The Eu2+-doped Ba3Si6O12N2 green phosphor (EuxBa3−xSi6O12N2) was synthesized by a conventional solid state reaction method. It could be efficiently excited by UV-blue light (250-470 nm) and shows a single intense broadband emission (480-580 nm). The phosphor has a concentration quenching effect at x=0.20 and a systematic red-shift in emission wavelength with increasing Eu2+ concentration. High quantum efficiency and suitable excitation range make it match well with the emission of near-UV LEDs or blue LEDs. First-principles calculations indicate that Ba3Si6O12N2:Eu2+ phosphor exhibits a direct band gap, and low band energy dispersion, leading to a high luminescence intensity. The origin of the experimental absorption peaks is clearly identified based on the analysis of the density of states (DOS) and absorption spectra. The photoluminescence properties are related to the transition between 4f levels of Eu and 5d levels of both Eu and Ba atoms. The 5d energy level of Ba plays an important role in the photoluminescence of Ba3Si6O12N2:Eu2+ phosphor. The high quantum efficiency and long-wavelength excitation are mainly attributed to the existence of Ba atoms. Our results give a new explanation of photoluminescence properties and could direct future designation of novel phosphors for white light LED.  相似文献   

17.
The Y0.95?xAlxVO4:5%Eu3+ (0≤x≤0.1) phosphors were successfully synthesized by solid state reaction at 900 °C for 6 h, and their luminescence properties were investigated under UV and VUV excitation. Monitoring at 619 nm, a strong broad absorption was enhanced by co-doping of Al3+ into the YVO4:Eu3+ lattices at 256 nm under UV excitation. The VUV excitation spectra also showed the enhanced excitation bands at about 156 and 200 nm. Under 254 or 147 nm excitation, it was found that Y0.95?xAlxVO4:Eu3+(0≤x≤0.1) phosphors showed strong red emission at about 619 nm corresponding to the electric dipole 5D0–7F2 transition of Eu3+. The improvement of luminescence intensity of YVO4:Eu3+ was also observed after partial substituting Y3+ by Al3+ and the optimal luminescence intensity appeared with incorporation of 2.5 mol% Al3+.  相似文献   

18.
Time and spectral dependences of the dielectric permittivity of the LiY1 ? x Lu x F4 (x = 0, 0.5, and 1) crystals doped with Ce3+ and co-doped with Yb3+ ions under UV laser excitation were studied by the 8-mm microwave resonant technique at room temperature. The obtained photoconductivity spectrum in 240–310 nm spectral range was interpreted as a stepwise photoionization spectrum of the Ce3+ ions due to sequential 4f–5d and 5d–6s transitions. Average lifetimes of free and defect trapped (color centers) charge carriers were estimated.  相似文献   

19.
The Sr2?x Eu x Al2Si1?y Mo y O7 as a new near-ultraviolet (UV) excited phosphors were synthesized and their luminescence properties under 393-nm excitation were investigated in detail. It was indicated that Sr2?x Eu x Al2SiO7 could be effectively excited by 393 nm, and it exhibited an intense red emission at 617 nm. The introduction of Mo ion and charge compensator ion Na did not change the position of the peaks but strengthened the absorption of the phosphors at ~400 nm and strongly enhanced the emission intensity of Eu3+ under 393-nm excitations. The intense red-emitting phosphor Sr1.56Eu0.22Na0.22Al2Si0.98Mo0.02O7 with tetragonal sheet structure was obtained. Its chromaticity coordinates (0.659, 0.331) was very close to the NTSC standard values (0.67, 0.33) and its emission intensity was about 1.5 times higher than that of the commercial red phosphor Y2O2S:0.05Eu3+. This is considered to be an efficient red-emitting phosphor for near-UV InGaN-based light-emitting diodes (LEDs).  相似文献   

20.
BaMg2Al6Si9O30:Eu2+ phosphors are synthesized by the solid-state reaction method and their photoluminescence (PL) properties are investigated. The ultraviolet emission originates from Eu2+(I) substituting for Ba2+ sites, whereas the blue emission is attributed to Eu2+(II) substituting for Mg2+ sites. With increasing Eu2+ doping concentrations, the blue emission band shifts to long wavelength and the PL intensity ratio of blue to ultraviolet emission increases. Energy transfer between the two different Eu2+ ions is analyzed by photoluminescence excitation and emission spectra, and lifetimes. Results indicate that the emission spectra can be tuned by changing Eu2+ contents. We have also demonstrated that BaMg2Al6Si9O30:Eu2+ phosphor is a kind of potential phosphor for fluorescent lamps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号