首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional plastics has a large impact in increasing the environment’s pollution. That’s why the interest has turned towards novel partially and completely biodegradable polymers. In this work, blends of polystyrene and thermoplastic starch with glycerol and Buriti (Mauritia flexuosa L.) oil as plasticizers were prepared. Samples were analyzed using TG/DTG and DSC techniques. The TG results indicated that the blends with Buriti oil are thermally more stable than those with glycerol. The DSC analysis that Buriti oil provides a higher degree of plasticization of PS, compared to the blends plasticized using glycerol under the studied conditions.  相似文献   

2.
In contrast to typical starch esterification in an aqueous solution, which are carried out at elevated to ambient reaction temperatures, a low reaction temperature was applied in this study to minimize the starch chain hydrolysis. The physical properties of the modified starch, obtained from an esterification of cassava starch with long-chain fatty acid chlorides carried out in aqueous media at 4°C, were characterized using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and contact angle measurements. The modified starches show improvement in thermal stability and hydrophobicity, which can be further optimized by varying the types of acid chlorides and the reaction conditions. The starch products have high potential for use as fillers for biodegradable polymers, especially polylactic acid (PLA), as their tunable hydrophobicity can impose strong effect on controlling of the PLA's hydrolytic degradation rate for specific applications. Results on mechanical properties of the blends between the modified starch and PLA show an improvement in modulus of the polymer.  相似文献   

3.
A biodegradable thermoplastic starch (TPS) was successfully prepared from plasticizer ethanolamine and native cornstarch. The hydrogen bonding interaction between starch and ethanolamine was investigated using Fourier transform infrared (FT‐IR). When the ethanolamine mass content was 30%, after the ethanolamine‐plasticized thermoplastic starch (ETPS) was stored at RH 50% for 14 days, the mechanical testing showed that the maximum tensile stress of the ETPS reached 5.98 MPa, the tensile strain reached 106.52%, Young's modulus increased from 38.14 MPa of glycerol‐plasticized thermoplastic starch (GTPS) to 75.32 MPa of ETPS, and the breaking energy increased from 1.921 N·m to 2.305 N·m, which indicated that the mechanical properties of ETPS evidently excelled those of the GTPS. The effects of water contents on the mechanical properties of ETPS and GTPS were studied. A differential scanning calorimetry (DSC) analysis revealed that the low‐temperature transition and the glass transition temperature (Tg) of the ETPS were ?58 and 22°C respectively, which were lower than that of the GTPS. The ETPS effectively restrained the re‐crystallization of traditional GTPS, which was proved by the X‐ray diffraction (XRD). The scanning electron microscopy (SEM) images presented that ethanolamine made starch uniform. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The structure, mechanical properties and susceptibility to degradation of blends of low density polyethylene (PE) or isotactic polypropylene (PP) and glycerol plasticized starch (GS) was investigated. Monoethers of glycerol and fatty alcohols (GA) and in some cases epoxidized rubbers (ER) were used as compatibilizers for the investigated systems. It was found that mechanical properties and ageing susceptibility of blends depend strongly on their composition, i.e. the content of plasticized starch in the blend and the content of glycerol in the starch. In some cases an increased susceptibility to biodegradation during soil or fungus ageing not only of the starch phase but also of the polymer phase was observed. The susceptibility of these systems to accelerated artificial weathering was also investigated.  相似文献   

5.
Blends of thermoplastic starch with poly(ethylene‐co‐vinyl alcohol) copolymer (EVOH) were melt extruded with water/glycerol as plasticizer and a series of amino acid additives. The biggest factor in end‐use mechanical properties proved to be the relative humidity (RH) during storage. Plasticized starch‐EVOH blends stored at 0 and 50% RH changed significantly over time, with, for example, the tensile strength (TS) of the glycerol‐plasticized blend increasing from 4.7 to 26.3 MPa over 8 weeks when maintained at 0% RH. In contrast, the TS of this same sample stored at 75% RH remained unchanged for 8 weeks. Amino acids provided relatively minor, but significant changes in mechanical properties with time. Based on TS, elongation‐to‐break, and modulus, it may be concluded that β‐alanine, sarcosine, and L ‐proline were more effective than glycerol at maintaining strong flexible blends. Increases in crystallinity and changes in morphology with time, as described by modulated DSC were correlated to these changes in mechanical properties. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

6.
Low-density polyethylene/plasticized starch/polycaprolactone blends were processed by conventional extrusion, injection molding, and film blowing techniques. The glass transition temperatures of plasticized starch were determined using differential scanning calorimetry. The blends were characterized by mechanical property measurements and scanning electron microscopy. The blend properties were found to depend not only on composition but also on the generated morphology. In films the fine dispersion of polycaprolactone phase in the polyethylene/starch matrix resulted in mechanical property increase, while in injection specimens there was property decrease due to phase coalescence. It appears that the different conditions existing at the two different shaping processes i.e. film blowing and injection molding could account for the final obtained morphology.  相似文献   

7.
Ethanolamine plasticised thermoplastic starch (ETPS) was prepared using a novel plasticiser ethanolamine. SEM images show that the native starch granules were destroyed, and the ethanolamine made them come into a uniform continuous phase. FTIR spectroscopy showed that the hydrogen bonds between the ethanolamine and starch molecules weakened the strong effect of starch intermolecular and intramolecular hydrogen bonds. The ETPS successfully restrains the re-crystallization of traditional thermoplastic starch plasticised by glycerol (GTPS), which was proved by XRD. The mechanical properties of ETPS, such as Young's modulus and breaking energy and the water absorption were improved. The glass-transition temperature (Tg) and thermal stability were also studied by DSC and TGA.  相似文献   

8.
Biodegradation of octanoated starch and its blends with LDPE   总被引:2,自引:0,他引:2  
Octanoated starch (OCST) with a high degree of substitution (DS = 2.1) is a fully amorphous and hydrophobic thermoplastic material. Its biodegradation was followed in activated sludge from a waste water treatment plant. Its blends with low-density polyethylene (LDPE) were also studied during soil burial for 6 months. From weight loss during the biodegradation period, it was found that OCST, even with such a high degree of substitution, is biodegradable. This was also verified with scanning electron microscopy. Holes were detected on the surface of the films as a consequence of starch consumption by microorganisms. Nevertheless, the rate of biodegradation is very small and depends on the amount of OCST in the blends. The mechanical properties such as tensile strength and elongation at break were measured. A reduction in both was found during the biodegradation period, mainly in blends with a higher amount of OCST.  相似文献   

9.
Summary: In this study, maleic anhydride (MA), and citric acid (CA) used as the processing additive and plasma treatment to improve the processing ability and mechanical strength of biodegradable starch/poly (vinyl alcohol) (PVA) blends were studied. The melt flow index (MFI) of starch/ glycerol/PVA (300g/60g/80g) blend was increased from 2.3g/10min to 32.7g/10min by adding 3g of MA and to 130 g/10min by adding MA and plasma treatment. The tensile strength of starch/glycerol/PVA blend increased from 3.48 to 6.21 MPa by adding 1.5g of MA and 1.5g of CA, while it increased to 6.26 MPa by plasma treatment. Esterification reaction which was evidenced by FTIR has been showed to improve the compatibility between starch and PVA when MA was dissolved into glycerol and glycerol grafted onto plasma pretreatment PVA. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) imaging were used to study the morphology of extruded blends.  相似文献   

10.
Films of poly(vinylidene fluoride), PVDF, and poly(vinylidene fluoride – trifluoroethylene), P(VDF-TrFE), containing corn starch and latex of natural rubber as additives were produced by compressing/annealing forming blends visioning applications as biomaterials. Therefore, considering the possible applications of these blends, a basic characterization has been carried out targeting to infer on their thermomechanical properties. The polymer films (PVDF and P(VDF-TrFE)) with different percentage of additives were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC), and dynamical-mechanical analysis (DMA). The compressing/annealing process allowed discarding the necessity of using the solvents to dissolve either PVDF or P(VDF-TrFE), which are usually toxic to human. The results showed that the polymers do not interact chemically with the additives with the blends showing high thermal stability and elasticity modulus at the same order of magnitude of the bone, for instance. The SEM imaged revealed that the blends present morphological structures of typical physical mixtures where each material can be identified within the blends.  相似文献   

11.
Wheat starch was reacted with poly(vinyl acetate) and with poly(vinyl acetate-co-butyl acrylate) in an internal mixer at 150 °C in the absence of catalyst, and in the presence of sodium carbonate, zinc-acetate and titanium(IV) butoxide. The resulted blends were pressed into film and characterized by 1H NMR-13C NMR spectroscopy, differential scanning calorimetry (DSC), mechanical testing, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), and water absorption. Partial trans-esterification took place between wheat starch and the polymers. The blends appeared as homogenous, translucent films with one glass transition temperature range, between that of starch and of the polymer. The presence of wheat starch in the blends improved the mechanical strength of the polymers, although elongation at break severely decreased, which is disadvantageous for processability. Zinc-acetate improved the tensile strength of the blends of starch with PVAC, while all catalysts resulted in an increase in strength of the blends of starch with poly(vinyl acetate-co-butyl acrylate) compared to the strength of the blends without catalyst. Water absorption of wheat starch/copolymer blends was between 150% and 250%, higher than that of the blends with the homopolymer, which was between 100% and 150% after soaking in water. The onset temperature of thermal decomposition was between 290 and 300 °C for all the blends, although the presence of sodium carbonate resulted in a decrease in the onset temperature of thermal decomposition by about 60 °C.  相似文献   

12.
Nanocomposites films have been processed from a filler and a matrix having the same nature, i.e. waxy maize starch. The filler consists of nanoplatelet-like starch particles obtained as an aqueous suspension by acid hydrolysis of starch granules and the matrix was prepared by plasticization and disruption of starch granules with water and sorbitol. Nanocomposite films were obtained by casting and evaporating the mixture of the aqueous suspension of starch nanocrystals with the gelatinized starch. The resulting films were conditioned before testing and the effect of accelerated ageing in moist atmosphere was investigated. The thermal properties of the nanocomposite films were determined from DSC measurements and the mechanical characterization was performed in both the linear and nonlinear range.  相似文献   

13.
Summary: Polymer blends consisting of linear poly(phenylene sulfide) (PPS) and hyperbranched PPS (HPPS) were obtained in melt. The solid-state properties of PPS and their blends were investigated by scanning electron microscopy (SEM), thermogravimetric analyzer (TGA), extraction measurement, differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA). Blends prepared by melt mixing turned out to be reactive as shown by the TGA and extraction measurement. SEM indicated that no phase separation occurs in PPS/HPPS blends. The degree of crystallization of the blends decreased with increasing HPPS content. Both the storage modulus and loss modulus increased as HPPS content increasing.  相似文献   

14.
Commercially available biodegradable aliphatic polyesters, i.e., high molecular weight poly(ϵ-caprolactone) (PCL) and polylactide (PLA), were melt blended with a well-known natural and biodegradable polysaccharide: starch either as corn starch granules or as thermoplastic corn starch after plasticization with glycerol. Conventional melt blending yielded compositions with poor mechanical performances as a result of lack of interfacial adhesion between the rather hydrophobic polyester matrix and the highly hydrophilic and moisture sensitive starch phase. Interface compatibilization was achieved via two different strategies depending on the nature of the polyester chains. In case of PLA/starch compositions, PLA chains were grafted with maleic anhydride through a free radical reaction conducted by reactive extrusion. The maleic anhydride-grafted PLA chains (MAG-PLA) allowed for reinforcing the interfacial adhesion with granular starch as attested by TEM of cryofracture surface. As far as PCL/starch blends were concerned, the compatibilization was achieved via the interfacial localization of amphiphilic graft copolymers formed by grafting of PCL chains onto a polysaccharide backbone such as dextran. The PCL-grafted polysaccharide copolymers were synthesized by controlled ring-opening polymerization of ϵ-caprolactone proceeding via a coordination-insertion mechanism. These compatibilized PCL/starch compositions displayed much improved mechanical properties as determined by tensile testing as well as a much more rapid biodegradation as measured by composting testing.  相似文献   

15.
Blends of poly(ε‐caprolactone) (PCL) with zein (PCL/zein) in different proportions (100/0, 75/25, 50/50, 25/75 and 0/100 wt% containing 5 wt% glycerol) were compared based on their mechanical properties (tensile strength, elongation at break, and Young's modulus), and on their thermal properties, the latter determined by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The morphology of the materials was studied by scanning electron microscopy (SEM). Blends of PCL/zein showed reduced tensile strength and elongation at break, but increased Young's modulus compared to the pure polymers, in agreement with the DMTA and SEM results. These findings indicated that PCL and zein were incompatible. TGA showed that the thermal stability was enhanced by the addition of zein to PCL, whereas SEM showed a poor interfacial interaction between the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
将聚乳酸(PLA)、聚碳酸酯(PPC)及β-羟基丁酸酯与β-羟基戊酸酯共聚物(PHBV)以溶液浇注法制备了各种不同比例的共混膜(60/20/20,40/20/40,40/40/20,20/60/20,20/40/40,20/20/60)。采用示差扫描量热分析(DSC)和热重分析(TG)研究了共混物的热性能,采用万能材料试验机研究了共混物的力学性能,通过土壤悬浊拟环境降解实验和扫描电子显微镜(SEM)研究了共混材料的环境生物降解性能。结果显示,该三元共混体系是部分相容的体系,PLA增加了材料的强度,PPC增加了材料的断裂伸长,PHBV则提高了材料的环境生物降解速率,三者优势互补,是一种有应用前景的生物降解共混体系。  相似文献   

17.
Bone tissue engineering is an efficient approach to regenerating bone-related defects. The optimal scaffold used for bone tissue engineering must possess adequate porosity and suitable mechanical properties. This work described the development of a biodegradable polymeric composite based on polycaprolactone (PCL) and starch that can form a porous structure in situ. The scaffold exhibited the required mechanical properties at the initial stage of implantation by controlling in situ degradation and subsequent pore formation. PCL/starch (SPCL) scaffolds with 100/0, 70/30, and 50/50 ratios were developed. Degradation studies were performed in phosphate buffer saline (PBS) containing α-amylase or lipase at 37 °C for 4 weeks. Fourier-transform infrared spectroscopy was used to analyze chemical bonds and their changes after degradation. Differential scanning calorimetry was applied to determine the crystallinity and recrystallization of samples before and after degradation. Mass loss and starch release were observed during degradation, and the porosity of samples was measured by the ethanol replacement method. Morphology was further determined using scanning electron microscopy. Finally, variations in compressive strength and modulus during degradation and pore formation were also measured. The porosity of samples reached 45% after 1 month of degradation, and mechanical properties were still appropriate for human bone tissue. Reduction in mechanical property after mass loss, starch release and pore formation was controlled by the hydrogen bonding and recrystallization effect of PCL after degradation. Results suggested that SPCL composite had potential to form porous scaffold with adequate mechanical properties in situ and is promising for bone tissue engineering applications.  相似文献   

18.
In the present study the miscibility behaviour and the biodegradability of poly(ε-caprolactone)/poly(propylene succinate) (PCL/PPSu) blends were investigated. Both of these aliphatic polyesters were laboratory synthesized. For the polymer characterization DSC, 1H NMR, WAXD and molecular weight measurements were performed. Blends of the polymers with compositions 90/10, 80/20, 70/30 and 60/40 w/w were prepared by solution-casting. DSC analysis of the prepared blends indicated only a very limited miscibility in the melt phase since the polymer-polymer interaction parameter χ12 was −0.11. In the case of crystallized specimens two distinct phases existed in all studied compositions as it was found by SEM micrographs and the particle size distribution of PPSu dispersed phase increased with increasing PPSu content. Enzymatic hydrolysis for several days of the prepared blends was performed using Rhizopus delemar lipase at pH 7.2 and 30 °C. SEM micrographs of thin film surfaces revealed that hydrolysis affected mainly the PPSu polymer as well as the amorphous phase of PCL. For all polymer blends an increase of the melting temperatures and the heat of fusions was recorded after the hydrolysis. The biodegradation rates as expressed in terms of weight loss were faster for the blends with higher PPSu content. Finally, a simple theoretical kinetic model was developed to describe the enzymatic hydrolysis of the blends and the Michaelis-Menten parameters were estimated.  相似文献   

19.
Abundant literature exists on starch or modified starch blended with biodegradable polyesters to achieve good performance with cheap compost plastics. The level of miscibility in these blends is one of the most relevant parameters. In the present study, solid-state 1H and 13C NMR spectra, as well as carbon spin-lattice relaxation times T1(C) and proton spin-lattice relaxation times T1(H) and proton spin-lattice relaxation times in the rotating frame T(H) of biodegradable starch (or starch formate)/polycaprolactone (PCL) (or polyester (PE) oligomers) blends and samples of the neat components were measured. From the T(H) and T1(H) relaxation times it follows that blends starch/PCL, starch/PE-oligomers and starch formate/PE-oligomers are phase separated even on the scale of 20-110 nm. On the contrary starch formate/PCL blend is phase separated on the scale 2.5-12 nm but homogeneously mixed on the scale 20-90 nm. Moreover, shorter T1(C) and especially T(H) values found for the starch or starch formate component in all these blends in comparison with neat samples show that molecular mobility of starch and starch formate segments is affected by blending. This indicates some miscibility also in phase separated blends which can happen in amorphous channels of starch.  相似文献   

20.
Motivated by the development of miscible nano-blends with supramolecularly organized structures, relying on intermolecular interactions, novel poly(methyl methacrylate) (PMMA)/aramid nano-blend system was designed. Aramid chains, obtained through the condensation of a mixture of 1,5-diaminonaphthalene and 1,3-phenylenediamine with terephthaloyl chloride, were incorporated in PMMA to form nano-structured blends via physical interlocking. Effect of polymer–polymer interactions on miscibility and macroscopic properties of blends were studied using tensile testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Tensile properties well indicated the mechanical compatibility resulting from good component cohesion via hydrogen bonding. DSC results also designated entirely miscible blends even at high aramid content. Morphological observations corroborated these findings as well, however, physical interaction of PMMA with varying aramid content efficiently altered blend morphology. Blends with 10, 20, 60 and 70 wt.% aramid possessed fine patterns owing to nano-level compatibility of two phases. Novel blends holding advanced properties can be potentially exploited to acquire exceptional performance in various technological applications such as nano-templates, nano-structured membranes, nano-devices, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号