首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A rapid, sensitive and specific high performance liquid chromatographic method is described for the determination of ceftazidime in serum, urine, CSF and peritoneal dialysis fluid. The procedure employs reversed-phase chromatography, using hydrochlorothiazide as an internal standard. The assay only requires 100 μl of sample with direct injection of diluted urine, CSF, peritoneal dialysis fluid or protein precipitated serum. Stability studies indicate good drug recovery if urine and serum are stored under proper conditions. The method is specific for ceftazidime in the presence of amikacin, gentamicin, kanamycin, tobramycin, methicillin, penicillin G, ampicillin, chloramphenicol and caffeine. The method has been successfully employed in the assay of over 700 samples obtained during human clinical trials.  相似文献   

2.
Endogenous estrogens and estrogen metabolites (EM) in human peritoneal fluid may play an important role in health and disease, yet little is known regarding their types and levels present in human peritoneal fluid, primarily due to the lack of an analytical method that is capable of directly quantifying their absolute abundances. In this report, we describe the application of a capillary LC-MS/MS method for identifying and quantifying biologically active and total endogenous EM in human peritoneal fluid. The method requires only 50 muL of peritoneal fluid, yet can quantify 13 distinct EM. Calibration curves for each EM were linear over a 10(3)-fold concentration range and the lower LOQ was 50 fg on-column. For a charcoal stripped human peritoneal fluid sample containing 10 pg/mL of each EM, accuracy ranged from 83 to 118%, and intrabatch precision ranged from 0.2 to 4.4% RSD and interbatch precision ranged from 5.5 to 15.5% RSD. The analyses of human female peritoneal fluid shows that at least 10 biologically active and 11 total endogenous EM can be positively identified and quantitatively measured. Many of the biologically active forms are present in high abundance and possess distinct biological activities which warrant further study. Although micellar EKC gave baseline separation of a standard mixture of 10 EM, the LOQs using UV detection were not suitable for the assay of the low level estrogens in biological samples.  相似文献   

3.
In the past we have reported significant cognitive deficits in mice receiving 5‐fluorouracil in combination with low‐dose methotrexate. To explain such interactions, a pharmacokinetic study was designed. A sensitive bio‐analytical method was therefore developed and validated for 5‐fluorouracil and methotrexate in mouse plasma, brain and urine with liquid chromatography coupled to a single quadrupole mass spectrometer. Chromatographic separation was accomplished by Agilent® Zorbax® SB‐C18 column, with isocratic elution (5 mM ammonium acetate and methanol, 70:30, %v/v) at a flow rate of 300 μL/min. The limit of quantitation for both drugs was 15.6 ng/mL (plasma and brain) and 78.1 ng/mL (urine), with interday and intraday precision and accuracy ≤15% and a total run time of 6 min. This bio‐analytical method was used for the pharmacokinetic characterization of 5‐fluorouracil and methotrexate in mouse plasma, brain and urine over a period of 24 h. This method allowed characterization of the brain concentrations of 5‐fluorouracil over a period of 24 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
An ultra‐high‐performance liquid chromatography–tandem mass spectrometry (UHPLC‐MS/MS) method for the analysis of cefazolin and cefalothin in human plasma (total and unbound), urine and peritoneal dialysate has been developed and validated. Total plasma concentrations are measured following protein precipitation and are suitable for the concentration range of 1–500 µg/mL. Unbound concentrations are measured from ultra‐filtered plasma acquired using Centrifree® devices and are suitable for the concentration range of 0.1–500 µg/mL for cefazolin and 1–500 µg/mL for cefalothin. The urine method is suitable for a concentration range of 0.1–20 mg/mL for cefazolin and 0.2–20 mg/mL for cefalothin. Peritoneal dialysate concentrations are measured using direct injection, and are suitable for the concentration range of 0.2–100 µg/mL for both cefazolin and cefalothin. The cefazolin and cefalothin plasma (total and unbound), urine and peritoneal dialysate results are reported for recovery, inter‐assay precision and accuracy, and the lower limit of quantification, linearity, stability and matrix effects, with all results meeting acceptance criteria. The method was used successfully in a pilot pharmacokinetic study with patients with peritoneal dialysis‐associated peritonitis, receiving either intraperitoneal cefazolin or cefalothin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5'-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50) ranging from 0.7 - 2.3 mM in Caco-2 and 2.0 - 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 - 5.31 x 10(-6 )cm/sec) and floxuridine (0.48 x 10(-6 )cm/sec) were much higher than that of 5-FU (0.038 x 10(-6) cm/sec). MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1) exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.  相似文献   

6.
A gas chromatographic method for the determination of perphenazine (Tri-lafon) and its main metabolite in human plasma, perphenazine sulphoxide, has been developed. The procedure involves the use of an electron capture detector and permits the determination of the drug and its metabolite at concentrations down to 0.2 mug/l. This is sufficient for analyzing plasma from patients on ordinary treatment with perphenazine. Tests for specificity revealed no interference by nortriptyline or biperidine.  相似文献   

7.
We applied a new technique for quantitative linear range shift using in‐source collision‐induced dissociation (CID) to complex biological fluids to demonstrate its utility. The technique was used in a simultaneous quantitative determination method of 5‐fluorouracil (5‐FU), an anticancer drug for various solid tumors, and its metabolites in human plasma by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC/ESI‐MS/MS). To control adverse effects after administration of 5‐FU, it is important to monitor the plasma concentration of 5‐FU and its metabolites; however, no simultaneous determination method has yet been reported because of vastly different physical and chemical properties of compounds. We developed a new analytical method for simultaneously determining 5‐FU and its metabolites in human plasma by LC/ESI‐MS/MS coupled with the technique for quantitative linear range shift using in‐source CID. Hydrophilic interaction liquid chromatography using a stationary phase with zwitterionic functional groups, phosphorylcholine, was suitable for separation of 5‐FU from its nucleoside and interfering endogenous materials. The addition of glycerin into acetonitrile‐rich eluent after LC separation improved the ESI‐MS response of high polar analytes. Based on the validation results, linear range shifts by in‐source CID is the reliable technique even with complex biological samples such as plasma. Copyright © 2016 John Wiley & Sons Ltd.  相似文献   

8.
A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between ?4.41 and 3.65% with CV values less than 12.0% for capecitabine, between ?7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between ?3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between ?5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between ?4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, sensitive and selective method was developed for the determination of a novel steroidal androgen receptor antagonist (Win 49596, I) in human plasma. The procedure involved extraction from plasma using a solid-phase phenyl support and elution directly onto a reversed-phase C8 column using a mobile phase consisting of 0.2 mol/l sodium acetate buffer at pH 7-acetonitrile (45:55, v/v). Drug was monitored by ultraviolet detection at a wavelength of 238 nm. Linear responses were observed for standards over the range 0.01-5.0 micrograms/ml. The minimum quantifiable level was 0.02 microgram/ml, using a 0.5-ml plasma sample. The precision was 5.5% and the accuracy ranged from -9.4% to 0.23%. The analytical method has been used to quantify I in plasma from dogs and rats and is projected for use with human plasma from clinical trials.  相似文献   

10.
A new and reliable mass spectrometric method using an isotope dilution method in combination with matrix-assisted laser desorption/ionization-triple quadrupole tandem mass spectrometry (ID-MALDI-QqQ-MS/MS) has been developed and validated for the determination of concentrations of the antiretroviral drug tenofovir (TNV) in plasma from HIV-infected adults. The advantage of this new method is that (1) the method is ultrafast and (2) can be applied for high-throughput measurement of TNV in plasma. The method is based on a simple plasma deproteinization step in combination with the use of [adenine-(13) C(5) ]-TNV as the internal standard. TNV and [adenine-(13) C(5) ]-TNV were monitored by multiple reaction monitoring using the transition m/z 288.0 → 176.2 and m/z 293.2 → 181.2 for TNV and [adenine-(13) C(5) ]-TNV, respectively. The method was validated according to the most recent FDA guidelines for the development and validation of (new) bio-analytical assays. Validated method parameters were: linearity, accuracy, precision and stability of the method. The lowest limit of quantification was 0.10 μmol/l, whereas the limit of detection determined at a signal-to-noise ratio (S/N = 3:1) in pooled drug free human control plasma was 0.04 μmol/l. The validated method was successfully applied and tested for its clinical feasibility by the analysis of plasma samples from selected HIV-infected adults receiving the prodrug tenofovir disoproxil fumarate. Observed plasma TNV concentrations ranged between 0.11 and 0.76 μmol/l and measured plasma TNV concentrations were within the therapeutically relevant concentration range.  相似文献   

11.
An improved online two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry (2D LC-QToF MS) system was developed for the lipid profiling of human plasma, in which different lipid classes were separated by the first dimensional normal-phase (NP) LC and different lipid molecular species were separated by the second dimensional reversed-phase (RP) LC. This 2D LC-QToF MS system was built based on a ten-port, two-position valve as the interface, the conditions of which had been optimized and discussed in detail. As two loops were used to trap and transfer the first dimensional elute to the second dimension separately, this new interface suppressed the sample band broadening in the first dimensional column, increased the recovery and repeatability of 2D LC interface, and offered the possibility for the realization of not-stop-flow NP/RP 2D LC system. Finally, 190 endogenous lipid species out of 10 lipid classes were determined within a single run from the plasma of peritoneal patients. This method was also applied to identify the difference in lipid profile between plasma from peritoneal dialysis patients with bad volume status and peritoneal dialysis patients with good volume status. The discovery of 30 potential biomarkers would be helpful to the malnutrition, inflammation, and atherosclerosis syndrome investigation.  相似文献   

12.
A liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI–MS/MS) method was developed and validated to measure GDC-0084 in human plasma and cerebrospinal fluid (CSF). Reverse-phase chromatography with gradient elution was performed using a C18 column (50 × 2.0 mm, 3 μm). Solid-phase extraction of plasma and CSF was employed to give excellent recovery. MS detection was performed with positive ion screening in multiple reaction monitoring mode. The precursor to the product ions (Q1 → Q3) selected for GDC-0084 and GDC-0084-d6 were 383.2 → 353.2 and 389.2 → 353.2, respectively. A separate calibration curve was established for human plasma and CSF. Both calibration curves, ranging from 0.2 to 200 ng/mL, were linear and had acceptable intra- and inter-day precision and accuracy. The lower limit of quantitation and limit of detection for GDC-0084 in human plasma were 0.2 ng/mL (signal/noise ≥47) and 0.005 ng/mL (signal/noise ≥3.5), respectively, and for GDC-0084 in human CSF were 0.2 ng/mL (signal/noise ≥19.7) and 0.04 ng/mL (signal/noise ≥7.2). This method was successfully applied to analyze serial plasma samples obtained from children with diffuse intrinsic pontine gliomas and other midline gliomas who participated in pharmacokinetic studies as part of a phase I clinical trial of GDC-0084.  相似文献   

13.
A high-performance liquid chromatographic method with electrochemical detection was developed for the determination of exifone in human plasma and urine. Exifone was extracted from acidified plasma or neutralized urine with diethyl ether and the evaporated extracts were analysed on a C18 reversed-phase column. The compound was eluted in about 8 min with acetonitrile-0.3 M orthophosphoric acid (15:85, v/v) at a flow-rate of 0.9 ml/min. This method gave accurate and reproducible results; the calibration graphs were linear (r greater than 0.99) over the range of 2.8-360 nmol/l for plasma and 0.18-36 mumol/l for urine, and concentrations as low as 1 nmol/l in plasma could be quantified. These results allowed this assay to be used for determinations in single-dose pharmacokinetic studies.  相似文献   

14.
A reversed-phase column liquid chromatographic (LC) method with electrochemical detection (ED) is described for the quantification of 2,3-dihydro-6-[3-(2-hydroxymethyl)phenyl-2-propenyl]-5-benzofuranol (compound 1), a new locally active dual inhibitor of leukotriene and prostaglandin synthesis, in plasma. After a single liquid-liquid extraction of the biological specimen, the extract was analyzed using a liquid chromatograph with an amperometric detector set at an oxidation potential of +0.55 V. The resulting chromatograms are free from endogenous interference and the limit of detection is 0.2 ng/ml. Several other analogous dihydrobenzofuranols were shown to be electrochemically active, permitting their determination using LC with ED. The described analytical method has been fully validated in the concentration range 0.5-20 ng/ml of plasma and utilized in the analysis of plasma samples from human clinical studies. The analytical methodology has also been adapted for analysis of compound 1 in human skin blister fluid after topical administration of 1.  相似文献   

15.
An analytical method based on liquid–liquid extraction has been developed and validated for analysis of agomelatine in human plasma. Fluoxetine was used as an internal standard for agomelatine. A Betasil C18 (4.0 × 100 mm, 5 µm) column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatographic conditions and mass spectrometric detection in the positive ionization mode using an API‐4000 system. The proposed method has been validated with linear range of 0.050–8.000 ng/ml for agomelatine. The intra‐run and inter‐run precision values are within 12.12% and 9.01%, respectively, for agomelatine at the lower limit of quantification level. The overall recovery for agomelatine and fluoxetine was 67.10% and 72.96%, respectively. This validated method was used successfully for analysis of plasma samples from a pharmacokinetic study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A capillary electrophoretic (CE) assay for oxalate has been applied to the quantitative determination of free oxalate in amniotic fluid. Indirect absorbance detection of oxalate is accomplished with a chromate-based background electrolyte modified with ethylenediaminetetraacetic acid (EDTA). Detection interference due to the presence of high levels (≈4 mg/ml) of inorganic chloride is eliminated through a direct sample clean-up procedure based on cation (Ag+-form) resins. Separation interference from amniotic fluid proteins is prevented through the use of a simple aqueous-based dilution procedure. This method for the determination of oxalate in amniotic fluid provides precision of ≈5% relative standard deviation (RSD). Within-day precisions for the oxalate response and migration time are better than 3% RSD and 1% RSD, respectively. Between-day precisions for the oxalate response and migration time are better than 6% RSD and 3% RSD, respectively. The analytical recovery of oxalate (1000 ng/ml) spiked into amniotic fluid was better than 96%. The limit of detection (LOD) for the method is ≈100 ng/ml oxalate. This method also shows promising results for the determination of oxalate in human blood plasma samples.  相似文献   

17.
High-performance liquid chromatographic (HPLC) methods using ultraviolet (UV) detection have been developed for the assay of the antibiotic imipenem (N-formimidoyl thienamycin) in human plasma and urine. A reversed-phase analytical column is employed in the plasma assay method and a cation-exchange column is used in the urine assay method. Both methods use borate buffer in the mobile phase. The method of preparation of human fluid samples for HPLC injection has been optimized with respect to the stability of imipenem in aqueous buffers, in morpholine buffer--ethylene glycol stabilizer, and in urine and plasma. Preparation of the samples before injection into the HPLC systems involves deproteination/filtration of the plasma/urine samples. The open lactam metabolite and the coadministered dehydropeptidase inhibitor, cilastatin sodium, do not interfere with the 313-nm detection of imipenem in either the plasma or the urine assay. Thienamycin, the precursor of imipenem and an impurity in imipenem formulations, is separated from the drug using both of these methods. Concentrations generated from the HPLC analysis of plasma and urine samples from two healthy volunteers compare favorably with results using a microbiological assay method. Correlation of the two methods gives r greater than or equal to 0.990 for both fluids.  相似文献   

18.
氟尿苷-层状双金属氢氧化物纳米杂化物制备及表征   总被引:1,自引:0,他引:1  
采用共沉淀法将抗癌药物氟尿苷插入Mg-Al层状双金属氢氧化物(LDHs)的层间,合成了氟尿苷-LDHs纳米杂化物。依据氟尿苷分子大小和杂化物通道高度推测,氟尿苷分子是以长轴垂直或略倾斜于LDHs层片在LDHs层间呈双层排列。分别在pH=4.8和7.2的介质中研究了药物释放动力学,表明符合准二级动力学方程;释放速率随载药量增大而降低;氟尿苷-LDHs纳米杂化物具有良好的缓释效果。  相似文献   

19.
A method for the simultaneous determination of nicergoline and three of its metabolites in human plasma and urine has been developed using high-performance liquid chromatography-atmospheric pressure ionization mass spectrometry. Nicergoline and its metabolites were extracted from the plasma and urine samples with chloroform and separated on a reversed-phase ODS column. The eluents were led to the atmospheric pressure ionization interface and then analysed in the selected-ion monitoring mode. The detection limits of nicergoline and three of its metabolites were ca. 2 ng/ml in plasma and ca. 10 ng/ml in urine, at a signal-to-noise ratio of 4.  相似文献   

20.
Levo ‐tetrahydropalmatine (l‐ THP) is an alkaloid isolated from Chinese medicinal herbs of the Corydalis and Stephania genera. It has been used in China for more than 40 years mainly as an analgesic with sedative/hypnotic effects. Despite its extensive use, its metabolism has not been quantitatively studied, nor there a sensitive reliable bioanalytical method for its quantification simultaneously with its metabolites. As such, the objective of this study was to develop and validate a sensitive and selective HPLC method for simultaneous quantification of l‐ THP and its desmethyl metabolites l‐ corydalmine (l‐ CD) and l‐ corypalmine (l‐ CP) in rat plasma and brain tissues. Rat plasma and brain samples were processed by liquid–liquid extraction using ethyl acetate. Chromatographic separation was achieved on a reversed‐phase Symmetry® C18 column (4.6 × 150 mm, 5 μm) at 25°C. The mobile phase consisted of acetonitrile–methanol–10 mm ammonium phosphate (pH 3) (10:30:60, v /v) and was used at a flow rate of 0.8 mL/min. The column eluent was monitored at excitation and emission wavelengths of 230 and 315 nm, respectively. The calibration curves were linear over the concentration range of 1–10,000 ng/mL. The intra‐ and interday reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. The validated HPLC method was successfully applied to analyze samples from a pharmacokinetic study of l‐ THP in rats. Taken together, the developed method can be applied for bioanalysis of l‐ THP and its metabolites in rodents and potentially can be transferred for bioanalysis of human samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号