首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combining Lipinski’s rule with the docking and steered molecular dynamics simulations and using the PubChem data base of about 1.4 million compounds, we have obtained DNA dyes Hoechst 34580 and Hoechst 33342 as top-leads for the Alzheimer’s disease. The binding properties of these ligands to amyloid beta (Aβ) fibril were thoroughly studied by in silico and in vitro experiments. Hoechst 34580 and Hoechst 33342 prefer to locate near hydrophobic regions with binding affinity mainly governed by the van der Waals interaction. By the Thioflavin T assay, it was found that the inhibition constant IC50 ≈ 0.86 and 0.68 μM for Hoechst 34580 and Hoechst 33342, respectively. This result qualitatively agrees with the binding free energy estimated using the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulations with the AMBER-f99SB-ILDN force field and water model TIP3P. In addition, DNA dyes have the high capability to cross the blood brain barrier. Thus, both in silico and in vitro experiments have shown that Hoechst 34580 and 33342 are good candidates for treating the Alzheimer’s disease by inhibiting Aβ formation.  相似文献   

2.
The absorption and fluorescence spectra, fluorescence quantum yields, lifetimes and time-resolved fluorescence spectra are reported for nine different fluorescent DNA-dyes. The work was initiated in search of a quantitative method to detect the ratio of single-to-double stranded DNA (ssDNA/dsDNA) in solution based on the photophysics of dye-DNA complexes; the result is a comprehensive study providing a vast amount of information for users of DNA strains. The dyes examined were the bisbenzimide or indole-derived stains (Hoechst 33342, Hoechst 33258 and 4',6-diamidino-2-phenylindole), phenanthridinium stains (ethidium bromide and propidium iodide) and cyanine dyes (PicoGreen, YOYO-1 iodide, SYBR Green I and SYBR Gold). All were evaluated under the same experimental conditions in terms of ionic strength, pH and dye-DNA ratio. Among the photophysical properties evaluated only fluorescence lifetimes for the cyanine stilbene dyes allowed a convenient differentiation between ssDNA and dsDNA. The bisbenzimide dyes showed multiexponential decays when bound to either form of DNA, making lifetime-based analysis cumbersome with inherent errors. These dyes also presented biexponential decay when free in aqueous buffered solutions at different pH. A mechanism for their deactivation is proposed based on two different conformers decaying with different kinetics. The phenanthridinium dyes showed monoexponential decays with ssDNA and dsDNA, but there was no discrimination between them. High dye-DNA ratios (e.g. 1:1) resulted in multiexponential decays for cyanine dyes, resulting from energy transfer or self-quenching deactivation. Shifts in both absorption and fluorescence maxima for both ssDNA and dsDNA DNA-cyanine dye complexes were small. Broadening of dye-ssDNA absorption and fluorescence bands for the cyanine dyes relative to dye-dsDNA bands was detected and attributed to higher degrees of rotational freedom in the former.  相似文献   

3.
The inclusion of sanguinarine, a biologically active natural benzophenanthridine alkaloid, in cucurbit[7]uril (CB7) was studied by NMR and ground-state absorption spectroscopy, as well as steady-state and time-resolved fluorescence measurements in aqueous solution. The iminium form of sanguinarine (SA(+)) produces very stable 1 : 1 inclusion complex with CB7 (K = 1.0 × 10(6) M(-1)), whereas the equilibrium constant for the binding of the second CB7 is about 3 orders of magnitude smaller. Marked fluorescence quantum yield and fluorescence lifetime enhancements are found upon encapsulation of SA(+) due to the deceleration of the radiationless deactivation from the single-excited state, but the fluorescent properties of 1 : 1 and 1 : 2 complexes barely differ. The equilibrium between the iminium and alkanolamine forms is shifted 3.69 pK unit upon addition of CB7 as a consequence of the preferential encapsulation of the iminium form and the protection of the 6 position of sanguinarine against the nucleophilic attack by hydroxide anion. On the basis of thermodynamic cycle, about 225 M(-1) is estimated for the equilibrium constant of the complexation between the alkanolamine form of sanguinarine (SAOH) and CB7. The confinement in the CB7 macrocycle can be used to impede the nucleophilic addition of OH(-) to SA(+) and to hinder the photooxidation of SAOH.  相似文献   

4.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

5.
设计合成了一种新型噻唑橙二聚体荧光染料Bi-TO3, 采用荧光发射光谱、 圆二色光谱及活细胞荧光成像等方法研究了其与DNA的相互作用. 在10 mmol/L Tris-HCl缓冲液(pH=7.4)中, Bi-TO3的固有荧光极弱, 量子产率小于0.001%; 与小牛胸腺DNA结合后, 其荧光可显著增强约950倍, 但对RNA和蛋白等生物大分子及黏度等环境因素则无明显响应. 紫外吸收光谱及圆二色光谱滴定实验表明, Bi-TO3以小沟结合模式与DNA作用, 且对AT序列有选择性. 实验结果表明, 在缓冲溶液中Bi-TO3的荧光增强信号与低浓度范围的poly(dA-dT)2仍呈良好的线性关系, 检出限为13.3 ng/mL, 灵敏较度高; 且Bi-TO3可在较低浓度范围(6~12 μmol/L)内应用于活细胞荧光成像.  相似文献   

6.
The photophysical properties of the phenazine-based dye neutral red were investigated in aqueous solution in the presence of the macrocyclic host molecule cucurbit[7]uril (CB7) using ground-state absorption as well as steady-state and time-resolved fluorescence measurements. The results are contrasted to those previously obtained for beta-cyclodextrin (beta-CD; Singh et al. J. Phys. Chem. A 2004, 108, 1465). Both the neutral (NR) and cationic (NRH+) forms of the dye formed inclusion complexes with CB7, with the larger binding constant for the latter (K = 6.5 x 10(3) M(-1) versus 6.0 x 10(5) M(-1)). This result differed from that for beta-CD, where only the neutral form of the dye was reported to undergo sizable inclusion complex formation. From the difference in binding constants and the pK(a) value of protonated neutral red in the absence of CB7 (6.8), an increased pK(a) value of the dye when complexed by CB7 was projected (approximately 8.8). This shift differed again from the behavior of the dye with beta-CD, where a decreased pK(a) value (ca. 6.1) was reported. The photophysical properties of both NR and NRH+ forms showed significant changes in the presence of CB7. Fluorescence anisotropy studies indicated that the inclusion complexes of both forms of the dye rotate as a whole, giving rotational relaxation times much larger than that expected for the free dye in aqueous solution. The thermodynamic parameters for the NRH+.CB7 complex were investigated in temperature-dependent binding studies, suggesting an entropic driving force for complexation related to desolvation of the cation and the removal of high-energy water molecules from the CB7 cavity.  相似文献   

7.
Herein, we explored the photophysical properties of the antimalarial, anticancer drug cryptolepine (CRYP) in the presence of the macrocyclic host cucurbit[7]uril (CB7) and DNA with the help of steady‐state and time‐resolved fluorescence techniques. Ground‐state and excited‐state calculations based on density functional theory were also performed to obtain insight into the shape, electron density distribution, and energetics of the molecular orbitals of CRYP. CRYP exists in two forms depending on the pH of the medium, namely, a cationic (charge transfer) form and a neutral form, which emit at λ=540 and 420 nm, respectively. In a buffer solution of pH 7, the drug exists in the cationic form, and upon encapsulation with CB7, it exhibits a huge enhancement in fluorescence intensity due to a decrement in nonradiative decay pathways of the emitting cryptolepine species. Furthermore, docking and quantum chemical calculations were employed to decipher the molecular orientation of the drug in the inclusion complex. Studies with natural DNA indicate that CRYP molecules intercalate into DNA, which leads to a huge quenching of the fluorescence of CRYP. Keeping this in mind, we studied the DNA‐assisted release of CRYP molecules from the nanocavity of CB7. Strikingly, DNA alone could not remove the drug from the nanocavity of CB7. However, an external stimulus such as acetylcholine chloride was able to displace CRYP from the nanocavity, and subsequently, the displaced drug could bind to DNA.  相似文献   

8.
We studied characteristics of [2] or [3]pseudorotaxanes based on stilbene dye SD?CB[7] . In neutral or weak alkaline conditions, SD could be encapsulated inside the stilbene site of CB[7] with 1:1 stoichiometry, whereas, with the pH changing to acidity, the hydrogen bonding between the carboxyl group and the carbonyl of CB[7] maked another CB[7] molecule include into hexanoic acid site, these processes were confirmed by fluorescence spectra,UV–Vis spectra and 1H NMR.  相似文献   

9.
Dynamic assembly inclusion complexes of tweezer-type bis(zinc porphyrin) (1) with di(4-pyridyl)porphyrin derivatives have been designed and constructed. The complexes are induced by Zn-N coordination, and the weak binding allows the large-size di(4-pyridyl)porphyrin guests in random rotation. Dynamic characteristics of these assemblies, such as ligand exchange and dynamic fluorescence quenching, have been investigated by 1H NMR, UV-Vis and fluorescence spectra. The stability of such assembly has pronounced dependence on the size-matching effect and thermal effect.  相似文献   

10.
The binding of the polyaromatic guest, 3,6-diaminoacridine (Proflavine) to cucurbit[n]uril (CB[n]) where n = 6, 7 and 8 has been studied by fluorescence spectrophotometry and binding constants determined using a least squares fitting method. Titration of CB[8] into a solution of Proflavine results in a 95% decrease in fluorescence up to a CB[8] to Proflavine ratio of 2:1. From the induced fluorescence spectra a binding constant of 1.9 × 107 M? 1 was determined. When Proflavine is titrated into a solution of CB[8] a similar binding constant is calculated (1.3 × 107 M? 1). Titration of CB[6] into a solution of Proflavine yields a decrease in fluorescence of 18–20%, but no binding is observed beyond what is seen within experimental error. Finally, titration of CB[7] into a solution of Proflavine results in an increase in fluorescence (32%) and a blue-shift of the emission wavelength from 509 nm to 485 nm. From the induced fluorescence spectra a binding constant of 1.65 × 107 M? 1 was determined. From 1H NMR it appears that the decrease in fluorescence for Proflavine with CB[6] and CB[8] is due to collisional quenching, whereas the increase in fluorescence with CB[7] may be due to rotational restriction.  相似文献   

11.
以邻菲咯啉(phen)、邻菲咯啉-5,6-二酮(dione)为配体首次合成了高氯酸邻菲咯啉-邻菲咯啉-5,6-二酮(Ⅱ)。用荧光光谱,摩尔比,粘度,MLCT减色效应,平衡常数以及荧光能量转移研究了各合物与鱼精子DNA的结合情况,证实了该络合物与DNA存在插入作用。基于络合物对DNA能量转移造成荧光量子产率比值(Φλ/Φ320)的降低,解释了不同波长激发光下,荧光发射峰在加入DNA后产生猝灭和增强两种绝然不同的现象。  相似文献   

12.
The spectral characteristics of different drugs i.e. sulfanilamide, sulfanilic acid, sulfosalicylic acid dihydrate (SSAD) and sulfamethoxazole in aqueous α-cyclodextrin (CD) have been investigated at neutral pH. The formation of inclusion complexes of sulfa drugs with α-CD leads to the changes in fluorescence and absorption spectra which further enable the calculation of association constant of the bind processes by implementing the non-linear regression on the experimental data. The standard Gibbs energy ΔG was also calculated for the systems in which complex formation was observed. The α-CD study indicates that the sulpha drugs form 1:1 inclusion complex with α-CD.  相似文献   

13.
The photophysical properties of aqueous solution of styryl dye, 4-[(E)-2-(3,4-dimethoxyphenyl)ethenyl]-1-ethylpyridinium perchlorate (dye 1), in the presence of cucurbit[7]uril (CB[7]) was studied by means of fluorescence spectroscopy methods. The production of 1:1 host-guest complexes in the range of CB[7] concentrations up to 16 μM with K = 1.0 × 10(6) M(-1) has been observed, which corresponds to appearance of the isosbestic point at 396 nm in the absorption spectra and a 5-fold increase in fluorescence intensity. The decay of fluorescence was found to fit to double-exponential functions in all cases; the calculated average fluorescence lifetime increases from 145 to 352 ps upon the addition of CB[7]. Rotational relaxation times of dye 1 solutions 119 ± 14 ps without CB[7] and 277 ± 35 ps in the presence of CB[7] have been determined by anisotropy fluorescence method. The comparison of the results of quantum-chemical calculations and experimental data confirms that in the host cavity dye 1 rotates as a whole with CB[7].  相似文献   

14.
The effect of Hoechst 33258 binding on the geometry of a DNA duplex (plasmid pBR322) has been examined using topoisomerase II relaxation followed by gel electrophoresis. Of this drug-DNA system, fluorescence, optical absorption, and calorimetric measurements were also made at various drug and DNA concentrations and in the same buffer as that for the topoisomerase reaction. It has been confirmed that there are two modes of drug-DNA interaction. When the drug concentration is much lower than the DNA base pair concentration, the Hoechst 33258 molecule binds in the minor groove of the DNA duplex and occupies a site formed of five continuous base pair sequences that contain no G.C pair. Here, the equilibrium constant K1 is 1.8 x 10(7) M-1 (at 37 degrees C), and the enthalpy of binding delta H1 is -865 cal/mol. When the drug concentration is much higher, on the other hand, it shows another binding mode which is much weaker, so that K2 = 2.25 x 10(4) M-1 and delta H2 is -464 cal/mol, which gives fluorescence quenching, which has no base pair preference, and which causes an unwinding of the duplex by 1 degree.  相似文献   

15.
The aim of this work was to investigate the effect of altered water activity on Hoechst 33258-calf thymus DNA (CtDNA) interaction by using osmotic stress approach. Water activity was changed by using osmolytes viz., sucrose and triethylene glycol (TEG). We have reported the results of thermal denaturation, absorption and fluorescence spectroscopy and binding affinity measurements as a function of osmolytes concentration. TEG dramatically lowered the thermal stability of CtDNA, ΔT(m)=-16 °C whereas sucrose induced very little decrease. Hoechst 33258 increases the stability of CtDNA, but in the presence of TEG, the ΔT(m) was -37 °C and a marginal decrease was observed with sucrose. Binding affinity of Hoechst 33258 with CtDNA was found to be reduced from 4.75×10? to 0.16×10? M?1 in TEG and this was accompanied with the increased uptake of 74±2 water molecules. In the presence of sucrose this uptake of water molecules was found to be 30±1. Method of continuous variation suggests that the osmolytes lowered the stoichiometry of Hoechst 33258-CtDNA complex. On the contrary, van't Hoff plot revealed the hydrophobic interaction (ΔS=130.66 J mol?1 K?1) between the Hoechst 33258 and CtDNA. The detailed absorption and fluorescence spectral measurements including the fluorescence lifetime and anisotropy indicated bound state of Hoechst 33258 in osmotic stress condition. Fluorescence lifetime measurement revealed that the contribution from the planar conformer of Hoechst 33258 dominated the binding interaction with CtDNA in presence of TEG. These results can be useful for understanding of interaction of Hoechst 33258 with genomic DNA in a complex environment having altered water activity.  相似文献   

16.
利用1H NMR技术、电喷雾质谱、红外光谱以及紫外吸收光谱法等手段研究了瓜环[n](n=7,8)与枸橼酸西地那非的相互作用。结果表明:枸橼酸西地那非与两种瓜环都形成了1∶1的包结配合物,但是其配合物的作用模式随瓜环的大小而不同。通过计算得出瓜环[n](n=7,8)与枸橼酸西地那非的包结常数分别为958和1530 L/mol,说明瓜环对枸橼酸西地那非具有潜在的缓释作用。  相似文献   

17.
Interaction of 10‐methylacridinium iodide (MAI) as fluorescence probe with nucleobases, nucleosides and nucleic acids has been studied by UV‐visible absorption and fluorescence spectroscopy. It was found that fluorescence of MAI is strongly quenched by the nucleobases, nucleosides and nucleic acids, respectively. The quenching follows the Stern‐Volmer linear equation. The fluorescence quenching rate constant (kq) was measured to be 109‐1010 (L/mol)/s within the range of diffusion‐controlled rate limit, indicating that the interaction between MAI and nucleic acid and their precursors is characteristic of electron transfer mechanism. In addition, the binding interaction model of MAI to calf thymus DNA (ct‐DNA) was further investigated. Apparent hypochromism in the absorption spectra of MAI was observed when MAI binds to ct‐DNA. Three spectroscopic methods, which include (1) UV spectroscopy, (2) fluorescence quenching of MAI, (3) competitive dual‐probe method of MAI and ethidium bromide (EB), were utilized to determine the affinity binding constants (K) of MAI and ct‐DNA. The binding constants K obtained from the above methods gave consistent data in the same range (1.0–5.5) × 104L/mol, which lend credibility to these measurements. The binding site number was determined to be 1.9. The influence of thermal denaturation and phosphate concentration on the binding was examined. The binding model of MAI to ct‐DNA including intercalation and outside binding was investigated.  相似文献   

18.
Double-stranded DNA offers multiple binding sites to DNA stains. Measurements of noncovalently bound dye-nucleic acid complexes are, necessarily, measurements of an ensemble of chromophores. Thus, it is difficult to assign fluorescence properties to base-pair-specific binding modes of cyanine dyes or, vice versa, to obtain information about the local environment of cyanines in nucleic acids by using optical spectroscopy. The feasibility to stain DNA and simultaneously probe local perturbations by optical spectroscopy would be a valuable asset to nucleic acid research. So-called FIT probes (forced intercalation probes) were used to pinpoint the location of the DNA stain thiazole orange (TO) in PNADNA duplexes. A detailed analysis of the base-pair dependence of optical properties is provided and enforced binding of TO is compared with "classical" binding of free TO-PRO1. UV-visible absorbance, circular dichroism (CD) and fluorescence spectroscopy, and melting-curve analyses confirmed site-specific TO intercalation. Thiazole orange exhibited base-specific responses that are not observed in noncovalent dye-nucleic acid complexes, such as an extraordinary dependence of the TO extinction coefficient (+/-60 % variation of the averaged epsilon(max) of 57,000 M(-1) cm(-1)) on nearest-neighbor base pairs. TO signals hybridization, as shown by increases in the steady-state fluorescence emission. Studies of TO fluorescence lifetimes in FIT-PNA and in DNADNA and PNADNA complexes highlighted four different fluorescence-decay processes that may be closed or opened in response to matched or single-mismatched hybridization. A very fast decay process (0.04-0.07 ns) and a slow decay process (2.33-3.95 ns) provide reliable monitors of hybridization, and the opening of a fast decay channel (0.22-0.48 ns) that resulted in an attenuation of the fluorescence emission is observed upon the formation of mismatched base pairs.  相似文献   

19.
The interaction of toluidine blue (TB) with cyclodextrins (CDs), including β-cyclodextrin (β-CD) and carboxymethyl-β-cyclodextrin (CM-β-CD), and calf thymus DNA in aqueous solution is studied by ultraviolet-visible absorption and steady-state fluorescence technique. The interactive model of TB with double-stranded DNA has been investigated by means of the inclusive action of β-CD and CM-β-CD. Based on the changes of absorption, fluorescence and resonance light scattering (RLS) spectra, the intrinsic binding constant (Kap) and the binding site number (n) of TB with DNA and the inclusion complexes TB–CD with DNA are obtained in the case of 20 mmol L?1 Tris-HCl buffer solution (pH 7.2). According to the experimental results, it can be inferred that the interactive model of dimer TB with DNA is ‘electrostatic binding’, while the monomer TB with DNA is ‘intercalative binding’.  相似文献   

20.
The supramolecular interaction between calf thymus DNA (ctDNA) and Coumarin 153 in the presence of β-cyclodextrin (β-CD) or C-hexylpyrogallol[4]arene (C-HPA) was studied. Inclusion complexes of Coumarin 153 with β-CD and C-HPA were characterised by infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and two-dimensional rotating-frame nuclear overhauser effect spectroscopy. The inclusion complexation was further followed by steady-state and time-resolved fluorescence measurements. The influence of β-CD or C-HPA in the binding strength and binding model of C153 with ctDNA was studied by UV–visible, fluorescence and molecular modelling technique. The possible group of interaction of Coumarin 153 with DNA, β-CD and C-HPA was shown by molecular modelling technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号