首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

2.
A method for speciation of Cr(III) and Cr(VI) in real samples has been developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its pyrrolidinedithiocarbamate (APDC) complex by using a column containing Amberlite XAD–2000 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of pH, flow‐rate, adsorption and batch capacity and effect of various metal cations and salt anions on the sorption onto the resin were investigated. The adsorption is quantitative in the pH range of 1.5–2.5, and Cr(VI) ion was desorbed by using H2SO4 in acetone. The recovery of Cr(VI) was 97 ± 4 at a 95% confidence level. The highest preconcentration factor was 80 for a 200 mL sample volume. The adsorption and batch capacity of sorbent were 7.4 and 8.0 mg g?1 Cr(VI), respectively, and loading half time was 5.0 min. The detection limit of Cr(VI) is 0.6 μg/L. The procedure has been applied to the determination and speciation of chromium in stream water, tap water, mineral spring water and spring water. Also, the proposed method was applied to total chromium preconcentration in microwave digested moss and rock samples with satisfactory results. The developed method was validated with CRM‐TMDW‐500 (Certified Reference Material Trace Metals in Drinking Water) and BCR‐CRM 144R s (Certified Reference Material Sewage Sludge, Domestic Origin) and the results obtained were in good agreement with the certified values. The relative standard deviations were below 6%.  相似文献   

3.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

4.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

5.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

6.
A method is described for the determination of Cr(VI) and total chromium by FAAS. Cr(VI) is separated from Cr(III) by adsorption on melamine-formaldehyde resin. After elution of Cr(VI) with 0.1 mol/l NaAc solution, it is analysed by FAAS. Total chromium is determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with hydrogen peroxide, total Cr(VI) is concentrated as above. If the total concentration of chromium is sufficient, the determination can be directly made by FAAS. Cr(III) can then be calculated by subtracting Cr(VI) from the total Cr. This method was successfully applied to the determination of chromium in lake water.  相似文献   

7.
Summary The pyrolysed graphite L'vov platform of a tube furnace is considered as an electrode for the electrodeposition and speciation of chromium by electrothermal atomisation atomic absorption spectrometry (ETA-AAS). Firstly, a preliminary study of the Cr(VI)/Cr(III) voltammetric behavior at pH 4.70 on a glassy-carbon electrode is carried out. Secondly, the L'vov platform is used as a cathodic macro-electrode for the selective preconcentration of Cr(VI)/Cr(III) on a mercury film. Speciation of Cr(VI)/Cr(III) is carried out on the basis of the electrolysis potential (Ee): at pH 4.70 and Ee=–0.30 V, only Cr(VI) is reduced to Cr(III) and accumulated as Cr(OH)3 by adsorption on a mercury film; at Ee=–1.80 V both Cr(VI) and Cr(III) are accumulated forming an amalgam with added mercury(II) ions. Once the film has been formed, the platform is transferred to a graphite tube to atomise the element. The reliability of the method was tested for the speciation of chromium in natural waters and it proves to be highly sensitive thanks to the electroanalytical step. In all samples, the Cr(VI) concentration was less than the detection limit (0.15 ng ml–1), and the concentration of Cr(III) agrees with those of total chromium. The analytical recovery of Cr(VI) added to water samples [3.50 ng ml–1 of Cr(VI)] was 105±6.2%.  相似文献   

8.
The possibility of using moss (Funaria hygrometrica), immobilized in a polysilicate matrix as substrate for speciation of Cr(III) and Cr(VI) in various water samples has been investigated. Experiments were performed to optimize conditions such as pH, amount of sorbent and flow rate, to achieve the quantitative separation of Cr(III) and Cr(VI). During all the steps of the separation process, Cr(III) was selectively sorbed on the column of immobilized moss in the pH range of 4-8 while, Cr(VI) was found to remain in solution. The retained Cr(III) was subsequently eluted with 10 ml of 2 mol l−1 HNO3. A pre-concentration factor of about 20 was achieved for Cr(III) when, 200 ml of water was passed. The immobilized moss was packed in a home made mini-column and incorporated in flow injection system for obtaining calibration plots for both Cr(III) and Cr(VI) at low ppb levels that were compared with the plots obtained without column. After separation, the chromium (Cr) species were determined by inductively coupled plasma mass spectrometry (ICP-MS) and flame atomic absorption spectrometry (FAAS). The sorption capacity of the immobilized moss was found to be ∼11.5 mg g−1 for Cr(III). The effect of various interfering ions has also been studied. The proposed method was applied successfully for the determination of Cr(III) and Cr(VI) in spiked and real wastewater samples and recoveries were found to be >95%.  相似文献   

9.
 An isotope dilution mass spectrometric (IDMS) method, using the formation of positive thermal ions, was developed for Cr(III) and Cr(VI) speciation in aerosol particles. Cr(III) and Cr(VI) spike species, enriched in 53Cr, were applied for the isotope dilution step. After leaching of filter collected aerosol samples by an alkaline solution at pH 13, species separation was carried out by extraction with a liquid anion exchanger in methyl isobutyl ketone. Cr(VI) in the organic phase was re-extracted into an ammoniacal solution and chromium was then isolated from both fractions of species by electrodeposition. Detection limits of 30 pg/m3 for Cr(III) and of 8 pg/m3 for Cr(VI) were achieved in atmospheric aerosols for volumes of air samples of about 120 m3. These low detection limits allowed the determination of chromium species in continental aerosol particles in dependence on different seasons. The Cr(III) /Cr(VI) ratio was always found to be about 0.3 whereas dust from soil erosion, which is probably the primary source of chromium in the atmosphere, showed higher ratios. This indicates that chromium is oxidized in the atmosphere. The accuracy of the method was demonstrated in two interlaboratory comparisons of Cr(VI) determinations in welding dust samples. The IDMS method also contributed to the certification of a corresponding standard reference material organized by the Standard Reference Bureau of the European Union. Chromium speciation, including the determination of elemental chromium Cr(0), was carried out in aerosols of different welding processes for stainless steel. These analyses showed distinct differences in the distribution of chromium species in the welding process and can be used as an exact calibration method for routine methods in this important field of monitoring corresponding working places. Received: 19 August 1996/Revised: 24 September 1996/Accepted: 28 September 1996  相似文献   

10.
An inductively coupled plasma atomic emission spectrometric (ICP-AES) method was developed for speciation and simultaneous determination of Cr and As, since these two analytes are commonly determined in various water samples in order to assess their toxicity. The objective of this research was to study the speciation of Cr(III), Cr(VI) in the presence of As(III) and/or As(V) using solid phase extraction (SPE) and ICP-AES. For these measurements, four spectral lines were used for each analyte with the purpose of selecting the most appropriate for each element. Finally with the use for first time of a cation-exchange column filled with benzosulfonic acid and elution with HCl, the speciation in solutions which contained [Cr(III)?+?Cr(VI)?+?As(V)] and [Cr(III)?+?Cr(VI)?+?As(III)] was examined. It was demonstrated that the separation of the two chromium species is almost quantitative and the simultaneous determination of chromium species and total arsenic analytes is possible, with very good performance characteristics. The estimated limits of detection for Cr(III), Cr(VI), As(III) and/or As(V) were 0.9?µg?L?1, 1.1 µg?L?1, 4.7 µg?L?1 and 4.5 µg?L?1 respectively, the calculated relative standard deviations (RSDs) were 3.8%, 4.1%, 5.2% and 5.1% respectively, and finally the accuracy of the methods was estimated using a certified aqueous reference material and found to be 5.6% and 4.8% for Cr(III) and Cr(VI) respectively. The method was applied to the routine analysis of various water samples.  相似文献   

11.
Summary A method for the determination of chromium(III) and (VI) species has been studied and applied to mineral water samples. The chromium(III) was chelated with 0.1 mol/l 8-hydroxyquinoline in methyl alcohol, extracted in isobutyl methyl ketone and determined by ETA-AAS. The effects of the pH, extraction and heating time and amounts of the reagents required for the extraction were studied. A method for the determination of total chromium was optimized too, and the chromium(VI) can be calculated. The precision, sensibility, accuracy, graphite furnace program and interferences for both methods were also investigated.  相似文献   

12.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer-scale TiO2 particles) was prepared by a sol-gel method and characterized by X-ray diffraction and scanning electron microscopy. The adsorptive behavior of Cr(III) and Cr(VI) on immobilized nanometer TiO2 was assessed. Cr(III) was selectively sorbed on immobilized nanometer TiO2 in the pH range of 7-9, while Cr(VI) was found to remain in solution. A sensitive and selective method has been developed for the speciation of chromium in water samples using an immobilized nanometer TiO2 microcolumn and inductively coupled plasma atomic emission spectrometry. Under optimized conditions (pH 7.0, flow rate 2.0 mL/min), Cr(III) was retained on the column, then eluted with 0.5 mol/L HNO3 and determined by ICP-AES. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by ascorbic acid. The adsorption capacity of immobilized nanometer TiO2 for Cr(III) was found to be 7.04 mg/g. The detection limit for Cr(III) was 0.22 ng/mL and the RSD was 3.5% (n = 11, c = 100 ng/ mL) with an enrichment factor of 50. The proposed method has been applied to the speciation of chromium in water samples with satisfactory results.  相似文献   

13.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

14.
In this approach a fluorometric technique has been developed to study chromium speciation, based on optimised conditions using chemometric methods of experimental design and central composite design. Full and fractional factorial design was used for evaluation of the effective factors in determination of Cr(VI) by fluorometric using Rhodamine-6G in the presence of H2SO4. Theory and methodology of a central composite design as a chemometric method for the optimisation of analytical procedures were developed in this approach. It was found that the analytical performance for measurement at the point of optimum in this technique is superior and more accurate than that of one variable at a time. Cr(VI) and Cr(III) were measured in a wastewater sample using the proposed technique. The results confirm the selective determination and speciation of Cr(VI)/Cr(III).  相似文献   

15.
Groundwater samples collected from a tannery contaminated area were analyzed for chromium species with the objective of investigating the interference of Cr(III)-organic complexes in the determination of Cr(VI) using APDC–MIBK extraction procedure. The contribution of Cr(III), Cr(VI) and Cr(III)-organic complexes towards total chromium ranged between 2 and 61%, 27 and 86%, and, 6 and 23%, respectively. The Cr(III)-organic complexes were not extractable by APDC–MIBK, however, HNO3 digestion released the organic bound Cr(III). Interference of organic bound Cr(III) in Cr(VI) determination due to MIBK soluble Cr(III) was not observed. Significant difference between total dissolved chromium determined after appropriate digestion procedure, and the sum of dissolved Cr(III) and Cr(VI) determined indicates the presence of the Cr(III)-organic complexes. MIBK extraction of samples without APDC is an useful way to check the extractability of organic bound Cr(III). The presence of soluble Cr(III)-organic complexes thus add complexity to chromium speciation analysis by APDC–MIBK procedure.  相似文献   

16.
Bağ H  Türker AR  Lale M  Tunçeli A 《Talanta》2000,51(5):895-902
A rapid, sensitive and accurate method for the separation, preconcentration and determination of Cr(III) and Cr(VI) in water samples is described. Chromium species can be separated by biosorption on Saccharomyces cerevisiae immobilized on sepiolite and determined by flame atomic absorption spectrometry (FAAS). The optimum conditions for separation and preconcentration (pH, bed height, flow rate and volume of sample solution) were evaluated. Recovery of the chromium was 96.3+/-0.2% at 95% confidence level. The breakthrough capacity of the adsorbent was found as 228 mumol g(-1) for Cr(III). The proposed method was applied successfully to the determination of Cr(III) and Cr(VI) in spiked and river water samples.  相似文献   

17.
Hagendorfer H  Goessler W 《Talanta》2008,76(3):656-661
Due to its extensive use in industrial processes, large quantities of chromium compounds are discharged into the environment. Common approaches for the speciation of Cr employ the determination of Cr(VI) and total Cr. The focus of the present work was a separation of Cr(III) and Cr(VI) species, with a minimum of sample preparation, by keeping an eye on the more relevant and toxic Cr(VI). For the successful simultaneous separation of both chromium species we implemented a RSpak NN-814 4DP (PEEK, 4 mm x 150 mm) multi-mode column using an eluent containing 90 mM ammonium sulfate and 10 mM ammonium nitrate, adjusted to pH 3.5. At a flow of 0.3 mL min(-1) the separation of both Cr species was possible within 8 min. Further the octopole reaction system of the inductively coupled plasma mass spectrometer was systematically studied and optimised to reduce the influence of polyatomic interferences. The major advantage of the developed method compared to published methods is that a derivatisation of the Cr(III) species--an invasion in the speciation--is not required. With the used multi-mode column both chromium species are retained. Furthermore the pH of the mobile phase (pH 3.5) prevents reduction of Cr(VI) as well as precipitation of Cr(III) during the analysis. A limit of determination of approximately 0.5 microg L(-1) for both chromium species with an injection volume of 25 microL was obtained. The optimised method was successfully applied to the determination of Cr(VI) in cement samples as well as chromium speciation analysis in homeopathic drugs.  相似文献   

18.
Cloud point extraction (CPE) was applied as a preconcentration step for HPLC speciation of chromium in aqueous solutions. Simultaneous preconcentration of Cr(III) and Cr(VI) in aqueous solutions was achieved by CPE with diethyldithiocarbamate (DDTC) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the DDTC chelates of Cr(III) and Cr(VI) was realized on a RP-C18 column with the use of a mixture of methanol-water-acetonitrile (65:21:14, v/v) buffered with 0.05 M NaAc-HAc solution (pH 3.6) as the mobile phase at a flow rate of 1.0 ml min(-1). The precision (R.S.D.) for eight replicate injections of a mixture of 100 microg l(-1) of Cr(III) and Cr(VI) were 0.6 and 0.5% for the retention time, 4.1 and 4.6% for the peak area measurement, respectively. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for HPLC separation and in the initial solution, was 65 for Cr(III) and 19 for Cr(VI). The linear concentration range was from 50 to 1000 microg l(-1) for Cr(III) and 50-2000 microg l(-1) for Cr(VI). The detection limits of Cr(III) and Cr(VI) were 3.4 and 5.2 microg l(-1), respectively. The developed method was applied to the speciation of Cr(III) and Cr(VI) in snow water, river water, seawater and wastewater samples.  相似文献   

19.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

20.
A new procedure for the speciation of chromium by means of differential pulse voltammetry using screen‐printed carbon electrodes (SPCEs) has been proposed. Two different modified carbon working, a Ag/AgCl reference and a carbon counter screen‐printed electrodes have been connected in array mode for the simultaneous determination of Cr(III) and Cr(VI). Mercury films or gold nanoparticles have been ground onto the SPCEs in order to improve their selectivity to each chromium species. The quantification of the peak currents observed at ?1.25 V in Hg‐SPCE and ?0.1 V in AuNPs‐SPCE were carried out. The method has been applied to the speciation of chromium in waste water from a tannery factory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号