首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

2.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

3.
An inductively coupled plasma atomic emission spectrometric (ICP-AES) method was developed for speciation and simultaneous determination of Cr and As, since these two analytes are commonly determined in various water samples in order to assess their toxicity. The objective of this research was to study the speciation of Cr(III), Cr(VI) in the presence of As(III) and/or As(V) using solid phase extraction (SPE) and ICP-AES. For these measurements, four spectral lines were used for each analyte with the purpose of selecting the most appropriate for each element. Finally with the use for first time of a cation-exchange column filled with benzosulfonic acid and elution with HCl, the speciation in solutions which contained [Cr(III)?+?Cr(VI)?+?As(V)] and [Cr(III)?+?Cr(VI)?+?As(III)] was examined. It was demonstrated that the separation of the two chromium species is almost quantitative and the simultaneous determination of chromium species and total arsenic analytes is possible, with very good performance characteristics. The estimated limits of detection for Cr(III), Cr(VI), As(III) and/or As(V) were 0.9?µg?L?1, 1.1 µg?L?1, 4.7 µg?L?1 and 4.5 µg?L?1 respectively, the calculated relative standard deviations (RSDs) were 3.8%, 4.1%, 5.2% and 5.1% respectively, and finally the accuracy of the methods was estimated using a certified aqueous reference material and found to be 5.6% and 4.8% for Cr(III) and Cr(VI) respectively. The method was applied to the routine analysis of various water samples.  相似文献   

4.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

5.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

6.
Summary The pyrolysed graphite L'vov platform of a tube furnace is considered as an electrode for the electrodeposition and speciation of chromium by electrothermal atomisation atomic absorption spectrometry (ETA-AAS). Firstly, a preliminary study of the Cr(VI)/Cr(III) voltammetric behavior at pH 4.70 on a glassy-carbon electrode is carried out. Secondly, the L'vov platform is used as a cathodic macro-electrode for the selective preconcentration of Cr(VI)/Cr(III) on a mercury film. Speciation of Cr(VI)/Cr(III) is carried out on the basis of the electrolysis potential (Ee): at pH 4.70 and Ee=–0.30 V, only Cr(VI) is reduced to Cr(III) and accumulated as Cr(OH)3 by adsorption on a mercury film; at Ee=–1.80 V both Cr(VI) and Cr(III) are accumulated forming an amalgam with added mercury(II) ions. Once the film has been formed, the platform is transferred to a graphite tube to atomise the element. The reliability of the method was tested for the speciation of chromium in natural waters and it proves to be highly sensitive thanks to the electroanalytical step. In all samples, the Cr(VI) concentration was less than the detection limit (0.15 ng ml–1), and the concentration of Cr(III) agrees with those of total chromium. The analytical recovery of Cr(VI) added to water samples [3.50 ng ml–1 of Cr(VI)] was 105±6.2%.  相似文献   

7.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

8.
A speciation procedure has been established for the flame atomic absorption spectrometric determination of Cr(III) and Cr(VI) based on coprecipitation of Cr(III) by using praseodymium(III) hydroxide (Pr(OH)3) precipitate. In the presented system, Cr(III) was quantitatively (>95%) recovered at the pH range of 10.0?C12.0 on Pr(III) hydroxide, while the recoveries of Cr(VI) were below 10%. The method was applied to the determination of the total chromium after reduction of Cr(VI) to Cr(III) by using hydroxylamine hydrochloride. The concentration of Cr(VI) is calculated by difference of total chromium and Cr(III) levels. The analytical parameters including pH of the aqueous medium, amount of Pr(III), centrifugation speed, sample volume were optimized. The influences of matrix ions were also investigated. The method was validated by the analysis of TMDA 70 fortified lake water certified reference material. The method was applied to the speciation of chromium in water samples.  相似文献   

9.
A method for speciation of Cr(III) and Cr(VI) in real samples has been developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its pyrrolidinedithiocarbamate (APDC) complex by using a column containing Amberlite XAD–2000 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of pH, flow‐rate, adsorption and batch capacity and effect of various metal cations and salt anions on the sorption onto the resin were investigated. The adsorption is quantitative in the pH range of 1.5–2.5, and Cr(VI) ion was desorbed by using H2SO4 in acetone. The recovery of Cr(VI) was 97 ± 4 at a 95% confidence level. The highest preconcentration factor was 80 for a 200 mL sample volume. The adsorption and batch capacity of sorbent were 7.4 and 8.0 mg g?1 Cr(VI), respectively, and loading half time was 5.0 min. The detection limit of Cr(VI) is 0.6 μg/L. The procedure has been applied to the determination and speciation of chromium in stream water, tap water, mineral spring water and spring water. Also, the proposed method was applied to total chromium preconcentration in microwave digested moss and rock samples with satisfactory results. The developed method was validated with CRM‐TMDW‐500 (Certified Reference Material Trace Metals in Drinking Water) and BCR‐CRM 144R s (Certified Reference Material Sewage Sludge, Domestic Origin) and the results obtained were in good agreement with the certified values. The relative standard deviations were below 6%.  相似文献   

10.
 A sensitive spectrophotometric method for the determination of ethanol with potassium dichromate was developed. Chromium(VI), in 7 mol L-1 perchloric acid, reacts quantitatively with ethanol to form chromium(III) and acetic acid. The reaction is complete in about 15 min at room temperature and the chromium(VI) consumed may be determined by the decrease of the absorbance at 267 nm. The analytical working parameters (such as acidity and ionic strength of the solution, temperature and time of the reaction, chromium(VI) concentration, matrix interferences) were optimized. The apparent molar absorptivities of chromium(VI), in the monomer and dimer form, and the equilibrium quotient for the dimerization reaction were determined in 3 mol L-1 perchloric acid solution. The method was applied to the analysis of micro samples of commercial beverages (beers, wines and spirits) without the previous distillation of ethanol. Received: 9 April 1996/Revised: 3 June 1996/Accepted: 11 June 1996  相似文献   

11.
Chromium speciation implies the quantitative determination of Cr(III) and Cr(VI). However, the presence of hydrolytic forms of Cr(III) and the instability of tracer level Cr(VI) in acid media complicates this speciation. The present work describes the stability of several monomeric Cr(III) species formed in the acid reduction of51Cr(VI). The distribution of Cr(VI) and Cr(X)n(H2O) 6–n (3–n)+ as a function of time was followed by paired cationic and anionic exchange analyses. The distributions and their time dependences are functions of the initial concentrations of both Cr(VI) and acid. The Cr(III) species eventually level to the hexaaquo form.  相似文献   

12.
Crosslinked chitosan-bound FeC nanoparticles (CCBFeCNP) were prepared, and the adsorptive behavior of Cr(III) and Cr(VI) on CCBFeCNP were assessed. At pH 6.0–10.0, CCBFeCNP is selective towards Cr(III) but hardly selective towards Cr(VI). The retained Cr(III) is subsequently eluted with 0.5 mol L−1 HCl. Total chromium is determined after reduction of Cr(VI) to Cr(III) by ascorbic acid. A new method of flow injection using a micro-column packed with CCBFeCNP as solid phase extractant has been developed for speciation of Cr(III) and Cr(VI) in water samples, followed by flame atomic absorption spectrometry. The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recoveries of Cr(III) were systematically investigated. Under optimum conditions, the adsorption capacity of CCBFeCNP for Cr(III) is 10.5 mg g−1 at pH 7.5. The procedure presented was applied to chromium speciation in water samples, and the results were satisfactory.  相似文献   

13.
《Electroanalysis》2017,29(5):1222-1231
A microbial sensor, namely carbon paste electrode (CPE) modified with Citrobacter freundii (Cf–CPE) has been developed for the detection of hexavalent (Cr(VI)) and trivalent (Cr(III)) chromium present in aqueous samples using voltammetry, an electroanalytical technique. The biosensor developed, demonstrated about a twofold higher performance as compared to the bare CPE for the chosen ions. Using cyclic voltammetry and by employing the fabricated Cf–CPE, the lowest limit of detection (LLOD) of 1x10−4 M and 5x10−4 M for Cr(VI) and Cr(III) ions respectively could be achieved. By adopting the Differential Pulse Cathodic Stripping Voltammetric technique, the LLOD could be further improved to 1x10−9 M and 1x10−7 M for Cr(VI) and Cr(III) ions respectively using the biomodified electrodes. The reactions occurring at the electrode surface‐chromium solution interface and the mechanisms of biosorption of chromium species onto the biosensor are discussed. The stability and utility of the developed biosensor for the analysis of Cr(VI) and Cr(III) ions in chromite mine water samples has been evaluated.  相似文献   

14.
The possibility of using moss (Funaria hygrometrica), immobilized in a polysilicate matrix as substrate for speciation of Cr(III) and Cr(VI) in various water samples has been investigated. Experiments were performed to optimize conditions such as pH, amount of sorbent and flow rate, to achieve the quantitative separation of Cr(III) and Cr(VI). During all the steps of the separation process, Cr(III) was selectively sorbed on the column of immobilized moss in the pH range of 4-8 while, Cr(VI) was found to remain in solution. The retained Cr(III) was subsequently eluted with 10 ml of 2 mol l−1 HNO3. A pre-concentration factor of about 20 was achieved for Cr(III) when, 200 ml of water was passed. The immobilized moss was packed in a home made mini-column and incorporated in flow injection system for obtaining calibration plots for both Cr(III) and Cr(VI) at low ppb levels that were compared with the plots obtained without column. After separation, the chromium (Cr) species were determined by inductively coupled plasma mass spectrometry (ICP-MS) and flame atomic absorption spectrometry (FAAS). The sorption capacity of the immobilized moss was found to be ∼11.5 mg g−1 for Cr(III). The effect of various interfering ions has also been studied. The proposed method was applied successfully for the determination of Cr(III) and Cr(VI) in spiked and real wastewater samples and recoveries were found to be >95%.  相似文献   

15.
Ultrafine heavy metal aerosols can have severe toxic and carcinogenic effects when inhaled in higher concentrations. The objective of this work was to develop a mobile continuous emission monitor (CEM) based on laser-induced plasma spectroscopy (LIPS) for an on-line analysis of chromium aerosols. The LIPS emission sensor was installed in an electroplating facility for a fast monitoring of particulate emissions to provide instantaneous feedback for process control. The prototype was tested in cooperation with an independent laboratory, which determined the total chromium content and the Cr(VI)/Cr(III) ratio in the exhaust stream by conventional filter analysis. The system provided both the necessary time-resolution and detection limits (14 μg m–3) for emission monitoring below the legal threshold (1 mg m–3) values. A good correlation was found between the on-line LIPS measurement and the independent reference analysis. Received: 22 March 1999 / Revised: 5 May 1999 / Accepted: 11 May 1999  相似文献   

16.
We report an in-situ harvesting technique of electron-hole (e-h+) carriers (e.g., the defect electrons in the O2 − matrix and the self-trapped holes, Si–O–Si) generated during sol-gel processing. In the absence of redox species, the e-h+ centers created during room temperature sol-gel polycondensation steps are quickly annihilated and deactivated. However, when Cr(VI) ions are pre-dispersed in sol-gel solutions, the ejected electrons can be effectively harvested for the reduction of Cr(VI) to Cr(III) ions which are encapsulated in the silica gel matrix. The Cr(VI) ions, the possible intermediate oxidation states of chromium ions such as Cr(V) and/or Cr(IV), and the stable Cr(III)-hole complexes in the sol-gel matrix are investigated using uv-visible spectroscopy, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. The chemical stability of Cr(VI) and Cr(III) in sol-gel networks is compared to that in aqueous solutions. The results indicate that the utilization of e-h+ carriers generated in the sol-gel can be an effective and selective means for investigating the redox process of Cr(VI) and encapsulating the stable Cr(III) ions in the confined sol-gel environments.  相似文献   

17.
Feasibility and limitations of direct coupling of high performance liquid chromatographic (HPLC) separation to microwave induced plasma (MIP)-optical emission spectrometry (OES) for elementspecific detection was tested and compared to inductively coupled plasma (ICP)-optical emission spectrometric detection on the basis of the Cr(III)/Cr(VI) speciation analysis of water samples. Coupling was performed by a hydraulic high pressure nebulizer (HHPN) radiative-heating/watercooling interface which provides about 20 % and 80 % aerosol yield in the case of helium and argon carrier gases, respectively. Desolvation efficiency of aqueous solutions was approximately 80 %. Applying the ion-pair HPLC separation, the organic eluents and reagents in the MIP cause a 50–75 % signal suppression for Cr(VI) and 25–50 % for Cr(III). In a pure aqueous solution the MIP Cr(VI) signal was by 20 % lower than that of Cr(III). These effects were lower using the ICP source, but they cannot be neglected. Easily ionizable matrix elements (Na, Ca) can cause 70 % signal suppression in the MIP, and 20 % in the ICP. Therefore, species dependent calibration is required in both cases. In the case of HPLC detection by MIP-OES, the detection limit was 13 ng for Cr(III), and 18 ng for Cr(VI). Using the ICP-OES detection, the detection limit was 0.2 ng for Cr (III) and 0.4 ng for Cr (VI). The linear dynamic ranges in both cases were two orders of magnitude. Presented at the XVIIIth Slovak Spectroscopic Conference, Spišská Nová Ves, 15–18 October 2006.  相似文献   

18.
Groundwater samples collected from a tannery contaminated area were analyzed for chromium species with the objective of investigating the interference of Cr(III)-organic complexes in the determination of Cr(VI) using APDC–MIBK extraction procedure. The contribution of Cr(III), Cr(VI) and Cr(III)-organic complexes towards total chromium ranged between 2 and 61%, 27 and 86%, and, 6 and 23%, respectively. The Cr(III)-organic complexes were not extractable by APDC–MIBK, however, HNO3 digestion released the organic bound Cr(III). Interference of organic bound Cr(III) in Cr(VI) determination due to MIBK soluble Cr(III) was not observed. Significant difference between total dissolved chromium determined after appropriate digestion procedure, and the sum of dissolved Cr(III) and Cr(VI) determined indicates the presence of the Cr(III)-organic complexes. MIBK extraction of samples without APDC is an useful way to check the extractability of organic bound Cr(III). The presence of soluble Cr(III)-organic complexes thus add complexity to chromium speciation analysis by APDC–MIBK procedure.  相似文献   

19.
The reactivity of chromium(III) species with the major oxidizing and reducing radiolysis products of water was investigated in aqueous solutions at temperatures up to 150 °C. The reaction between the hydrated electron (eaq) and Cr(III) species showed a positive temperature dependence over this temperature range. The reaction was also studied in pH 2.5 and 3.5 solutions for the first time. This work also studied the reaction between acidic Cr(III) species and the hydroxyl radical (⋅OH). It was found that Cr3+ did not react significantly with the ⋅OH radical, but the first hydrolysis species, Cr(OH)2+, did with a rate coefficient of k= (7.2±0.3)×108 M−1 s−1 at 25 °C. The oxidation of Cr(OH)2+ by the ⋅OH radical formed an absorbing product species that ultimately oxidized to give Cr(VI). These newly measured reaction rates allow for the development of improved models of aqueous chromium speciation for the effective remediation of liquid high-level nuclear waste via vitrification processes.  相似文献   

20.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号