首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Which compound classes are best suited as probes and tools for chemical biology research and as inspiration for medicinal chemistry programs? Chemical space is enormously large and cannot be exploited conclusively by means of synthesis efforts. Methods are required that allow one to identify and map the biologically relevant subspaces of vast chemical space, and serve as hypothesis‐generating tools for inspiring synthesis programs. Biology‐oriented synthesis builds on structural conservatism in the evolution of proteins and natural products. It employs a hierarchical classification of bioactive compounds according to structural relationships and type of bioactivity, and selects the scaffolds of bioactive molecule classes as starting points for the synthesis of compound collections with focused diversity. Navigation in chemical space is facilitated by Scaffold Hunter, an intuitively accessible and highly interactive software. Small molecules synthesized according to BIOS are enriched in bioactivity. They facilitate the analysis of complex biological phenomena by means of acute perturbation and may serve as novel starting points to inspire drug discovery programs.  相似文献   

2.
The efficient synthesis of small molecules having many molecular skeletons is an unsolved problem in diversity-oriented synthesis (DOS). We describe the development and application of a synthesis strategy that uses common reaction conditions to transform a collection of similar substrates into a collection of products having distinct molecular skeletons. The substrates have different appendages that pre-encode skeletal information, called sigma-elements. This approach is analogous to the natural process of protein folding in which different primary sequences of amino acids are transformed into macromolecules having distinct three-dimensional structures under common folding conditions. Like sigma-elements, the amino acid sequences pre-encode structural information. An advantage of using folding processes to generate skeletal diversity in DOS is that skeletal information can be pre-encoded into substrates in a combinatorial fashion, similar to the way protein structural information is pre-encoded combinatorially in polypeptide sequences, thus making it possible to generate skeletal diversity in an efficient manner. This efficiency was realized in the context of a fully encoded, split-pool synthesis of approximately 1260 compounds potentially representing all possible combinations of building block, stereochemical, and skeletal diversity elements.  相似文献   

3.
The development of effective small-molecule probes and drugs entails at least three stages: 1) a discovery phase, often requiring the synthesis and screening of candidate compounds, 2) an optimization phase, requiring the synthesis and analysis of structural variants, 3) and a manufacturing phase, requiring the efficient, large-scale synthesis of the optimized probe or drug. Specialized project groups tend to undertake the individual activities without prior coordination; for example, contracted (outsourced) chemists may perform the first activity while in-house medicinal and process chemists perform the second and third development stages, respectively. The coordinated planning of these activities in advance of the first small-molecule screen tends not to be undertaken, and each project group can encounter a bottleneck that could, in principle, have been avoided with advance planning. Therefore, a challenge for synthetic chemistry is to develop a new kind of chemistry that yields a screening collection comprising small molecules that increase the probability of success in all three phases. Although this transformative chemistry remains elusive, progress is being made. Herein, we review a newly emerging strategy in diversity-oriented small-molecule synthesis that may have the potential to achieve these challenging goals.  相似文献   

4.
Diversity‐oriented synthesis (DOS), which describes the synthesis of structurally diverse collections of small molecules, was developed, in part, to address combinatorial chemistry's shortfalls. In this paper, we hope to give an indication of what can be achieved using the DOS approach to library generation. We describe some of the most successful strategies utilized in DOS, with special focus on our own area of interest; DOS from simple, pluripotent starting materials. © 2008 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 8: 129–142; 2008: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20144  相似文献   

5.
The 2,11‐cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran‐based compounds designed to augment a typical medicinal chemistry library screen. Ring‐closing metathesis, lactonisation and SmI2‐mediated methods were exemplified and applied to the installation of a third ring to mimic the nine‐membered ring of the 2,11‐cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical‐space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti‐migratory activity of the natural products.  相似文献   

6.
The synthesis of small organic molecules as probes for discovering new therapeutic agents has been an important aspect of chemical biology. One of the best ways to access collections of small molecules is to use various techniques in diversity‐oriented synthesis (DOS). Recently, a new form of DOS, namely “relay catalytic branching cascades” (RCBCs), has been introduced, wherein a common type of starting material reacts with several scaffold‐building agents (SBAs) to obtain structurally diverse molecular scaffolds under the influence of catalysts. Herein, the RCBC reaction of a common type of substrate with SBAs is reported to give two different types of molecular scaffolds and their formation is essentially dependent on the type of catalyst used.  相似文献   

7.
Thiazole and related nucleus are one of the most important potential entities in the largely growing chemical world of heterocyclic compounds exhibiting remarkable pharmacological activities. The knowledge of various synthetic pathways and diverse physicochemical parameters of such compounds draw the especial attention of medicinal chemists to produce combinatorial library and carry out exhaustive efforts in the search of lead molecules. The similar compounds synthesized through different routes bear variable magnitudes of biological activities. The present review highlights a broad view on biological activities of compounds having thiazole nucleus.  相似文献   

8.
Diversity-oriented synthesis (DOS) and fluorous mixture synthesis (FMS) are two aspects of combinatorial chemistry. DOS generates library scaffolds with skeletal, substitution, and stereochemistry variations, whereas FMS is a highly efficient tool for library production. The combination of these two aspects in solution-phase synthesis of two novel heterocyclic compound libraries is presented in this paper. Mixtures of different fluorous amino acids undergo [3 + 2] cycloadditions followed by postcondensation reactions. The mixtures are then demixed by fluorous HPLC. Fluorous tags are removed by cyclization to afford hydantoin- and benzodiazepinedione-fused heterocyclic compounds as individual, pure, and structurally defined molecules. The application of MS-directed HPLC purification and parallel four-channel LC/MS analysis further increases the efficiency of FMS.  相似文献   

9.
Until recently, repetitive solid-phase synthesis procedures were used predominantly for the preparation of oligomers such as peptides, oligosaccharides, peptoids, oligocarbamates, peptide vinylogues, oligomers of pyrrolin-4-one, peptide phosphates, and peptide nucleic acids. However, the oligomers thus produced have a limited range of possible backbone structures due to the restricted number of building blocks and synthetic techniques available. Biologically active compounds of this type are generally not suitable as therapeutic agents but can serve as lead structures for optimization. “Combinatorial organic synthesis” has been developed with the aim of obtaining low molecular weight compounds by pathways other than those of oligomer synthesis. This concept was first described in 1971 by Ugi.[56f,g,59c] Combinatorial synthesis offers new strategies for preparing diverse molecules, which can then be screened to provide lead structures. Combinatorial chemistry is compatible with both solution-phase and solid-phase synthesis. Moreover, this approach is conducive to automation, as proven by recent successes in the synthesis of peptide libraries. These developments have led to a renaissance in solid-phase organic synthesis (SPOS), which has been in use since the 1970s. Fully automated combinatorial chemistry relies not only on the testing and optimization of known chemical reactions on solid supports, but also on the development of highly efficient techniques for simultaneous multiple syntheses. Almost all of the standard reactions in organic chemistry can be carried out using suitable supports, anchors, and protecting groups with all the advantages of solid-phase synthesis, which until now have been exploited only sporadically by synthetic organic chemists. Among the reported organic reactions developed on solid supports are Diels–Alder reactions, 1,3-dipolar cycloadditions, Wittig and Wittig–Horner reactions, Michael additions, oxidations, reductions, and Pd-catalyzed C? C bond formation. In this article we present a comprehensive review of the previously published solid-phase syntheses of nonpeptidic organic compounds.  相似文献   

10.
Two fields that routinely perform reaction optimization studies are chemical development (prior to scale-up) and medicinal or combinatorial chemistry (prior to analogue synthesis or library production). To date, the use of statistical design of experiments (DoE) in conjunction with automated synthesizers has been applied in process research to a greater extent than in the medicinal or combinatorial laboratories. We have applied DoE in conjunction with an automated synthesizer to optimize the synthesis of amides employing resin-bound N-hydroxybenzotriazole (PS-HOBt) active esters as intermediates. This methodology allowed the rapid development of an improved protocol for the parallel synthesis of amides by conversion of carboxylic acids to PS-HOBt esters followed by treatment with appropriate amines. Product isolation involved only simple filtration and evaporation.  相似文献   

11.
The efficient, simultaneous synthesis of structurally diverse compounds, better known as diversity-oriented synthesis (DOS), is not obvious, and remains a challenge to synthetic chemistry. This personal account details why DOS has such enormous implications for the discovery of small molecules with desired properties, such as catalysts, synthetic reagents, biological probes and new drugs, Also, I describe the evolution behind the current state-of-play of DOS.  相似文献   

12.
Herein, we report a diversity‐oriented‐synthesis (DOS) approach for the synthesis of biologically relevant molecular scaffolds. Our methodology enables the facile synthesis of fused N‐heterocycles, spirooxoindolones, tetrahydroquinolines, and fused N‐heterocycles. The two‐step sequence starts with a chiral‐bicyclic‐lactam‐directed enolate‐addition/substitution step. This step is followed by a ring‐closure onto the built‐in scaffold electrophile, thereby leading to stereoselective carbocycle‐ and spirocycle‐formation. We used in silico tools to calibrate our compounds with respect to chemical diversity and selected drug‐like properties. We evaluated the biological significance of our scaffolds by screening them in two cancer cell‐lines. In summary, our DOS methodology affords new, diverse scaffolds, thereby resulting in compounds that may have significance in medicinal chemistry.  相似文献   

13.
Since our emerging area article, diversity-oriented synthesis (DOS), which aims to prepare efficiently collections of skeletally diverse small molecules, has developed in the synthetic approaches it employs. This article describes three general strategies, highlighting some successful examples. The utility of DOS, in the interrogation of chemical space and in the identification of novel biologically active lead compounds, is also discussed.  相似文献   

14.
Since its inception, ketene chemistry has developed into a unique and well-established source of useful transformations for conventional synthetic organic chemistry. It is, therefore, not surprising that soon after their movement from the realm of peptide and peptoid libraries to that of small molecules, combinatorial chemists have sought the benefits of ketene chemistry to satisfy their own synthetic needs. The ability of these versatile molecules to undergo reactions with nucleophiles, and to participate in cycloadditions and cyclocondensations, has been utilized for the preparation of diverse heterocyclic compounds, and has added to the advantages of polymer-assisted synthesis for rapid purification. Different types of ketenes and different methods for their generation have been involved, which illustrates the potential diversity of the chemistry. There is now a better grasp of the effect of the fragility of these sometimes transient molecules on the reactions involving solid supports, and this augurs well for the application of some of the more recent developments in ketene chemistry to the generation of small-molecule libraries.  相似文献   

15.
All pharmaceutical products contain organic molecules; the source may be a natural product or a fully synthetic molecule, or a combination of both. Thus, it follows that organic chemistry underpins both existing and upcoming pharmaceutical products. The reverse relationship has also affected organic synthesis, changing its landscape towards increasingly complex targets. This Review article sets out to give a concise appraisal of this symbiotic relationship between organic chemistry and drug discovery, along with a discussion of the design concepts and highlighting key milestones along the journey. In particular, criteria for a high-quality compound library design enabling efficient virtual navigation of chemical space, as well as rise and fall of concepts for its synthetic exploration (such as combinatorial chemistry; diversity-, biology-, lead-, or fragment-oriented syntheses; and DNA-encoded libraries) are critically surveyed.  相似文献   

16.
Through a correlation of the ability of small molecules to bind biological macromolecules and their ability to modulate cellular and organismal processes, chemistry can inform biology and vice versa. Diversity-oriented organic synthesis (DOS), which aims to provide structurally complex and diverse small molecules efficiently, can play a key role in such chemical genetic studies. Here we illustrate the trial-and-error experimentation that can refine an initial pathway-planning exercise and result eventually in an effective diversity pathway. By exploring Ferrier and Pauson-Khand reactions on a glycal template, we have developed efficient and stereoselective syntheses of tricyclic compounds. In this pathway, diversity results from the substituents and their spatial relationships about the tricyclic rings. A pilot split-pool library synthesis of 2500 tricyclic compounds highlights the use of planning considerations in DOS and a "one-bead, one-stock solution" technology platform. Additionally, it illustrates a promising synthetic pathway for future chemical genetic studies.  相似文献   

17.
Diversity-oriented synthesis (DOS) has become a powerful synthetic tool that facilitates the construction of nature-inspired and privileged chemical space, particularly for sp3-rich non-flat scaffolds, which are needed for phenotypic screening campaigns. These diverse compound collections led to the discovery of novel chemotypes that can modulate the protein function in underrepresented biological space. In this context, starting material-driven DOS is one of the most important tools used to build diverse compound libraries with rich stereochemical and scaffold diversity. To this end, ene/yne tethered salicylaldehyde derivatives have emerged as a pluripotent chemical platform, the products of which led to the construction of a privileged chemical space with significant biological activities. In this review, various domino transformations employing o-alkene/alkyne tethered aryl aldehyde/ketone platforms are described and discussed, with emphasis on the period from 2011 to date.  相似文献   

18.
As part of a large medicinal chemistry program, we wish to develop novel selective estrogen receptor modulators (SERMs) as potential breast cancer treatments using a combination of experimental and computational approaches. However, one of the remaining difficulties nowadays is to fully integrate computational (i.e., virtual, theoretical) and medicinal (i.e., experimental, intuitive) chemistry to take advantage of the full potential of both. For this purpose, we have developed a Web-based platform, Forecaster, and a number of programs (e.g., Prepare, React, Select) with the aim of combining computational chemistry and medicinal chemistry expertise to facilitate drug discovery and development and more specifically to integrate synthesis into computer-aided drug design. In our quest for potent SERMs, this platform was used to build virtual combinatorial libraries, filter and extract a highly diverse library from the NCI database, and dock them to the estrogen receptor (ER), with all of these steps being fully automated by computational chemists for use by medicinal chemists. As a result, virtual screening of a diverse library seeded with active compounds followed by a search for analogs yielded an enrichment factor of 129, with 98% of the seeded active compounds recovered, while the screening of a designed virtual combinatorial library including known actives yielded an area under the receiver operating characteristic (AU-ROC) of 0.78. The lead optimization proved less successful, further demonstrating the challenge to simulate structure activity relationship studies.  相似文献   

19.
林旭锋  王彦广 《有机化学》2005,25(10):1157-1166
随着组合化学的迅速发展, 兼容固相合成和溶液相合成优点的液相合成方法已成为实现组合化学的一条重要途径. 综述了近年来聚乙二醇为可溶性聚合物载体支载的杂环化合物库的研究, 并展望了其今后的发展方向.  相似文献   

20.
Approval of bortezomib has validated ubiquitin-proteasome pathway as an important target for treatment of haematological malignancies. However, clinical shortcomings of bortezomib, a covalent peptide proteasome inhibitor, has prompted a paradigm shift in anti-proteasome drug discovery towards development of non-peptidic inhibitors and targeting of upstream ubiquitin system which has drawn traction for interdisciplinary forays. It is being widely recognized that natural products provide valuable leads in the discovery of potent, chemically diverse, non-peptidic inhibitors of 20S proteasome and of key enzymes involved in ubiquitination machinery. As a result, total synthesis of natural, non-peptidic inhibitors of ubiquitin-proteasome pathway has emerged as a critical interlink between organic synthesis, medicinal chemistry, biochemical profiling and drug discovery. An up-to-date account of contextual synthetic challenges, strategies and accomplishments as well as mapping of the chemical diversity space around the natural scaffolds has been captured in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号