首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Synthetic, structural and catalysis studies of two silver complexes namely, {[1-(2,4,6-trimethylphenyl)-3-(N-phenylacetamido)imidazol-2-ylidene]2Ag}+Cl1b, supported over an amido-functionalized N-heterocyclic carbene ligand, and [1-(i-propyl)-3-(benzyl)imidazol-2-ylidene]AgCl 2b, supported over a non-functionalized N-heterocyclic carbene ligand, are reported. Specifically, 1b, a cationic complex bearing 2:1 NHC ligand to metal ratio, was obtained from the reaction of 1-(2,4,6-trimethylphenyl)-3-(N-phenylacetamido)imidazolium chloride 1a with Ag2O in 52% yield. The corresponding 1a was synthesized by the alkylation reaction of 1-(2,4,6-trimethylphenylimidazole) with N-phenyl chloroacetamide in 73% yield. The other silver complex 2b, a neutral complex bearing 1:1 NHC ligand to metal ratio, was obtained from the reaction of 1-(i-propyl)-3-(benzyl)imidazolium chloride 2a with Ag2O in 42% yield. The 2a was synthesized by the alkylation reaction of 1-(i-propylimidazole) with benzyl chloride in 45% yield. The molecular structures of the imidazolium chloride, 1a, and the silver complexes, 1b and 2b, have been determined by X-ray diffraction studies. The silver complexes, 1b and 2b, successfully catalyze bulk ring-opening polymerization (ROP) of l-lactides at elevated temperatures under solvent-free melt conditions producing moderate to low molecular weight polylactide polymers having narrow molecular weight distributions.  相似文献   

2.
Synthesis, structures, and catalysis studies of gold(I) complexes of N-heterocyclic carbenes namely, a di-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene], a mono-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene] and a non-functionalized [1,3-di-i-propyl-benzimidazol-2-ylidene], are reported. Specifically, the gold complexes, [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene]AuCl (1c), [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]AuCl (2c), and [1,3-di-i-propyl-benzimidazol-2-ylidene]AuCl (3b), were prepared from the respective silver complexes 1b, 2b, and 3a by treatment with (SMe2)AuCl in good yields following the commonly used silver carbene transfer route. The silver complexes 1b, 2b, and 3a were synthesized from the respective imidazolium halide salts by the reactions with Ag2O. The N-heterocyclic carbene precursors, 1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazolium chloride (1a) and 1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazolium chloride (2a), were synthesized by the direct reactions of cyclohexene oxide and imidazole with chloroacetophenone and benzyl chloride respectively. The gold (1c, 2c, and 3b) and the silver (3a) complexes along with a new O-functionalized imidazolium chloride salt (1a) have been structurally characterized by X-ray diffraction. The structural studies revealed that geometries around the metal centers were almost linear in these gold and silver complexes. The gold (1c, 2c, and 3b) complexes efficiently catalyze ring-opening polymerization (ROP) of l-lactide under solvent-free melt conditions producing polylactide polymer of moderate to low molecular weights with narrow molecular weight distributions.  相似文献   

3.
3-(6-Phenylimidazo[2,1-b]thiazol-5-yl)quinoxalin-2(1H)-ones (qunoxalinone) (6a-q) have been synthesized by the reaction of ethyl 2-oxo-2-(6-phenylimidazo[2,1-b]thiazol-5-yl)acetates (4a-e) with suitably substituted o-phenylenediamines (5a-f) under microwave heating. The ethyl 2-oxo-2-(6-phenylimidazo[2,1-b]thiazol-5-yl)acetates (4a-e) were prepared by the reaction of 6-phenylimidazo[2,1-b]thiazoles (3a-e) with ethyl chlorooxoacetate in refluxing 1,4-dioxane whereas the thiazoles (3a-e) were synthesized by the reaction of 2-bromo-1-phenylethanones (2a-e) with thiazol-2-amine in refluxing acetone.  相似文献   

4.
N-Arylisoindolines 1a-i react with ethenetetracarbonitrile 2 in aerated benzene by formation of [3-(2-aryl-3-dicyanomethylene-2,3-dihydro-1H-isoindol-1-ylidene)-2-aryl-2,3-dihydro-1H-isoindol-1-ylidene]propanedinitriles 8a-i (20-36%), N-aryl-3-dicyanomethylene-isoindol-2-ones 9a-i (15-21%) and N-arylphthalimides 10a-i (4-9%) as well as 1,1,2,2-tetracyanoethane 11 (35-55%). The structure of 8d has been unambiguously confirmed by a single crystal X-ray structure analysis. A rationale for the formation of products 8-11 is presented.  相似文献   

5.
DFT calculations are employed to compare and contrast six-membered ring carbenes including 1,3-dimethyltetrahydropyrimidin-2-ylidene (1a), 1-methyl-3-cyclopropyltetrahydropyridine-2-ylidene (2a), and 1,3-dicyclopropylcyclohexane-2-ylidene (3a) as well as their unsaturated analogues 1b, 2b, 3b, and 2c. The amino groups exert singlet-triplet energy separation (?Es−t) of 60.9 kcal/mol to 1a while cyclopropyls induce a ?Es−t of 14.8 kcal/mol to 3a. The simultaneous presence of amino and cyclopropyl in 2a leads to a ?Es−t of 43.3 kcal/mol. Unsaturation slightly increases the ?Es−t of 1a and 3a but not that of 2a. Our thermodynamic, kinetic, and reactivity results are compared with those of synthetic five-membered ring N-heterocyclic carbenes.  相似文献   

6.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10300-10308
A novel and efficient regioselective synthesis of various arylated highly congested 7-aryl-5-methylsulfanylindan-4-carbonitriles (3a-f), methyl 7-aryl-5-methylsulfanylindan-4-carboxylates (10a-e) and 7-aryl-5-methylsulfanylindan-4-carboxylic acids (11a-e) through base-catalyzed reaction of 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (1a-f) and methyl 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (9a-e) by cyclopentanone (2) has been delineated. The synthetic potential of 2-pyranone was explored further to generate molecular diversity using 6-aryl-4-sec-amino-2-oxo-2H-pyran-3-carbonitriles (7a-h), 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (5a,b) and methyl 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (12a,b) as precursors for the ring transformation by cyclopentanone to assess the effects of substituents on the course of the reaction to obtain highly congested indans, 6,7-diaryl-5-methylsulfanylindan-4-carbonitriles (6a,b), 7-aryl-5-(piperidin-1-yl)indan-4-carbonitriles (8a-h) and methyl 6,7-diaryl-5-methylsulfanylindan-4-carboxylates (13a,b).  相似文献   

7.
A concise synthesis of 4-aryl-10-oxo-1,2,3,10-tetrahydro-9-thia-1,3a-diazadicyclopenta[a,g]naphthalene-6-carbonitriles 5a-f and 5-aryl-11-oxo-1,3,4,11-tetrahydro-2H-10-thia-1,4a-diaza-cyclopenta[b]phenanthrene-7-carbonitriles 5g-i has been delineated through ring transformations of the 2H-pyran-2-one 1, followed by photocyclization of product 4.  相似文献   

8.
An efficient and chromatography-free approach for synthesis of a new class of LFA-1 inhibitors was developed. A copper(I) chloride-promoted intramolecular cyclization of thiohydantoins 7a-b serves as a key step to highly functionalized bicyclic guanidines 5a-b, that were subsequently converted to 1H-imidazo[1,2-a]imidazol-2-one LFA-1 inhibitors. This process has been successfully implemented in the pilot plant to produce multikilogram quantities of LFA-1 inhibitors such as 1a-b.  相似文献   

9.
Thermolysis of substituted methyl 1-methyleneamino-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates 2a,b led to substituted dimethyl 3,9-dioxo-1,5,7,11-tetrahydro-1H,7H-dipyrazolo[1,2-a;1′,2′-d][1,2,4,5]tetrazine-1,7-dicarboxylates 4a,b and methyl 2,5-dihydro-5-oxo-1H-pyrazole-3-carboxylates 5a,b as minor products. The structure of compound 4a was determined by X-ray crystallography. The proposed mechanism of this conversion includes generation of (N-methyleneamino)imidoylketenes 6a,b and its intramolecular transformation to azomethine imines—5-oxo-2,5-dihydropyrazole-1-methylium-2-ides 7a,b, which undergo dimerization in head-to-tail manner yielding products 4a,b and partially hydrolyse to compounds 5a,b.  相似文献   

10.
Mixtures of ethyl (E)- and (Z)-4-alkoxy-2-fluoro-3,4-diphenylbut-2-enoates (6-8) prepared from benzoin ethers and ethyl 2-(diethoxyphosphoryl)-2-fluoroacetate were transformed in high yields to the target 3-fluoro-4,5-diphenylfuran-2(5H)-one (14) using bromine in tetrachloromethane at room temperature. The non-cyclisable Z-isomers 6b-8b were gradually isomerised to the cyclisable E-isomers 6a-8a during the process. The reaction of the (E)-butenoates 6a-8a with boron trifluoride led to furanone 14, while in Z-isomers 6b-8b both alkoxy group and vinylic fluorine were substituted with bromine during the reaction. Mechanisms for both complex reactions have been proposed. Furanone 14 was transformed to 2-[tert-butyl(dimethyl)silyloxy]-3-fluoro-4,5-diphenylfuran (18) as a novel building block.  相似文献   

11.
4,5-Dihydrofuran-3-carbonitriles 3a-i were obtained through oxidative cyclizations of 3-oxo-3-phenylpropanenitrile 1a, 3-oxo-3-thien-2-ylpropanenitrile 1b, 3-(2-furyl)-3-oxopropanenitirle 1c, 3-(1-benzofuran-2-yl)-3-oxopropanenitrile 1d, and 4,4-dimethyl-3-oxopropanenitrile 1e mediated manganese(III) acetate with 1,1-diphenyl-1-butene 2a and 1,2-diphenyl-1-pentene 2b. The treatments of these 3-oxopropanenitriles with 2-thienyl substituted alkenes such as 2-[(E)-2-phenylvinyl]thiophene 2c, 2-[(E)-1-methyl-2-phenylvinyl]thiophene 2d, and 2-(1-phenylvinyl)thiophene 2e formed 5-(2-thienyl)-4,5-dihydrofuran-3-carbonitriles 3j-r in good yields (45-93%). As a result, 2-thienyl substituted alkenes formed products in higher yields than phenyl substituted derivatives.  相似文献   

12.
Reactions of mixtures of t-butyl E- and Z-3-substituted glycidates 1a-h with 50% aq. sodium hydroxide and a catalyst, benzyltriethylammonium chloride, TEBAC in dichloromethane (phase-transfer catalysis, PTC) led to preferential hydrolysis of the E-isomers to afford pure (90-98%) t-butyl Z-3-substituted glycidates 1a-i in good yields; PTC cleavage of glycidates additionally substituted at C-2, 1g or C-3, 1h,i suggests that an aryl group in the Z isomers hampers attack of HO on the carbonyl carbon atom. As described in the literature, the diastereoselective PTC synthesis of Z-3-substituted glycidates and glycidonitriles consists of fast hydrolysis of E isomers present in mixtures with Z ones.  相似文献   

13.
A series of novel Schiff bases has been synthesized by reacting 7-hydroxy-4-methyl-2-oxo-2H-benzo[h]chromene-8,10-dicarbaldehyde 3 and 1-hydroxynaphthalene-2,4-dicarbaldehyde 8 with several primary alkylamines in ethyl alcohol at room temperature within 1-2 min. Schiff bases 4a-i and 9 were formed regioselectively by condensation with only one aldehyde, which is in chelation with a hydroxyl group. Extensive 2D NMR spectroscopic studies revealed that all the compounds 4a-i and 9 exist in the keto-enamine tautomeric form at room temperature. The high reactivity, regioselectivity and stable keto-enamine tautomeric form are due to the presence of an electron-withdrawing aldehyde group.  相似文献   

14.
Syntheses of all-Z-tribenzo[12]annulenes (1a-c) and Z,Z-tribenzodidehydro[12]annulenes (2a-c) by the reduction of the corresponding tribenzohexadehydro[12]annulenes 3a-c were carried out using a low valent titanium complex generated from Ti(O-i-Pr)4 and i-PrMgCl. The unique structure of the first reduction products 2a-c as well as 1a-c was fully characterized. Complexation of these annulenes with silver(I) ions produces the corresponding silver complexes. Among them, the silver complexes of 2a-c exhibit interesting monomer-dimer equilibrium.  相似文献   

15.
A series of (E)-(2-arylpyrazino[1,2-a]pyrimidine-4-ylidene)acetonitriles 5a-j and aryl/heteroaryl tethered pyrimidin-4-yl acetonitriles 6a-e has been synthesized in excellent yields through base catalyzed ring transformation of suitably functionalized 2H-pyran-2-ones 3 using 2-aminopyrazine 4a and arylamidinium salts 4b, separately.  相似文献   

16.
Irradiation of cis-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1a) in the presence of tert-butyl alcohol in hexane with a low-pressure mercury lamp bearing a Vycor filter proceeded with high stereospecificity to give cis-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2a), in 33% isolated yield, together with a 15% yield of 1-[(tert-butoxy)methylphenylsilyl]-4-(methylphenylsilyl)butane (3). The photolysis of trans-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1b) with tert-butyl alcohol under the same conditions gave stereospecifically trans-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2b) in 41% isolated yield, along with a 12% yield of 3. Similar photolysis of 1a and 1b with tert-butyl alcohol-d1 produced 2a and 2b, respectively, in addition to 1-[(tert-butoxy)(monodeuteriomethyl)(phenyl)silyl]-4-(methylphenylsilyl)butane. When 1a and 1b were photolyzed with acetone in a hexane solution, cis- and trans-2,3-benzo-1-isopropoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (4a and 4b) were obtained in 25% and 23% isolated yield. In both photolyses, 1-(hydroxymethylphenylsilyl)-4-(methylphenylsilyl)butane (5) was also isolated in 4% and 5% yield, respectively. The photolysis of 1a with acetone-d6 under the same conditions gave 4a-d6 and 5-d1 in 18% and 4% yields.  相似文献   

17.
An innovative route for the synthesis of a novel class of 4-aryl-11-oxo-1,2,3,11-tetrahydro-1,3a-diazacyclopenta[a]anthracene-6-carbonitriles 5a-h and 5-aryl-12-oxo-1,3,4,12-tetrahydro-2H-1,4a-diazabenzo[a]anthracene-7-carbonitriles 5i-k has been developed by ring transformation of suitably functionalized 2H-pyran-2-ones 1 with α-oxoketene cyclic aminals 2 to give compounds 4 followed by photo-induced cyclization.  相似文献   

18.
A series of (±)3-hydroxyl- and 2,3-dihydroxy-2,3-dihydro-7-oxopyrido[3,2,1-de]acridines were synthesized for antitumor evaluation. These agents can be considered as analogues of glyfoline or (±)1,2-dihydroxyacronycine derivatives. The key intermediates, 3,7-dioxopyrido[3,2,1-de]acridines (15a,b or 24a,b), for constructing the target compounds were synthesized either from 3-(N,N-diphenylamino)propionic acid (14a,b) by treating with Eaton’s reagent (P2O5/MsOH) (Method 1) or from (9-oxo-9H-acridin-10-yl)propionic acid (23a-c) via ring cyclization under the same reaction conditions (Method 2). Compounds 15a,b and 24a,b were converted into (±)3-hydroxy derivatives (25a-d), which were then further transformed into pyrido[3,2,1-de]acridin-7-one (28a-d) by treating with methanesulfonic anhydride in pyridine via dehydration. 1,2-Dihydroxylation of 28a-d afforded (±)cis-2,3-dihydroxy-7-oxopyrido[3,2,1-de]acridine (29a-d). Derivatives of (±)3-hydroxy (25a,b) and (±)cis-2,3-dihydroxy (29a-d) were further converted into their O-acetyl congeners 26a,b and 30a-d, respectively. We also synthesized 2,3-cyclic carbonate (31, 32, and 33) from 29a-c. The anti-proliferative study revealed that these agents exhibited low cytotoxicity in inhibiting human lymphoblastic leukemia CCRF-CEM cell growth in culture.  相似文献   

19.
(E,E)-2-Alkyl-8-furanyl-1,7-dioxa-spiro[5.5]undecanes (1a-i) have been prepared in good yield and with very high diastereoselectivity from lactones (2a-e) and alkynes (3a,b) using lithium acetylide coupling, hydrogenation, desilylation and acid catalysed cyclisation/equilibration.  相似文献   

20.
New mesoionic compounds (2H, 3H-thiazolo[3,2-c]oxazol-7-ones) (β) or ketenes ((3-acyl-1,3-thiazolidin-2-ylidene)methanone) (β′) were generated from N-acetyl and N-benzoyl-thiazolidine-2-carboxylic acids (7a,b) using different methods, and their reactivity towards N-(phenylmethylene)benzenesulfonamide (2) and N-(phenylmethylene)aniline (3) was tested. When (7a,b) were treated with (2) and acetic anhydride in refluxing toluene solution, only imidazo[5,1-b]thiazoles (8a,b) were obtained from the mesoionic compound intermediates (β). When the ketene intermediates (β′) were generated from (7a,b) by means of Mukaiyama's reagent, only spiro-β-lactams (9a,b) were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号