首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of the exact structural makeup of dielectric interface is crucial for development of novel gate materials. In this paper a study of the HfO2/Si interface created by the low-temperature deposition ultrathin stoichiometric HfO2 on Si substrates by reactive sputtering is presented. Analysis, quantification and calculation of layer thickness of an HfO2/Hf-Si-Ox/SiO2 gate stack dielectrics have been performed, using X-ray photoelectron spectroscopy (XPS) depth profile method, angle resolved XPS and interface modeling by XPS data processing software. The results obtained were found to be in good agreement with the high frequency capacitance-voltage (C-V) measurements. The results suggest a development of a complex three layer dielectric stack, including hafnium dioxide layer, a narrow interface of hafnium silicate and broad region of oxygen diffusion into silicon wafer. The diffusion of oxygen was found particularly detrimental to the electrical properties of the stack, as this oxygen concentration gradient leads to the formation of suboxides of silicon with a lower permittivity, κ.  相似文献   

2.
We systematically investigated the role of the top interface for TaCx and HfCx/HfO2 gate stacks on the effective work function (Φm,eff) shift by inserting a SiN layer at the gate/HfO2 top interface or HfO2/SiO2 bottom interface. We found that Φm,eff of the TaN gate electrode on HfO2 was larger than that on SiO2 because of the HfO2/SiO2-bottom-interface dipole. On the other hand, we found that Φm,eff values of the TaCx and HfCx gate electrodes on HfO2 agree with Φm,eff on SiO2. This is because the potential offset of the opposite direction with respect to the bottom interface dipole appears at the metal carbide/HfO2 interface. It is thus concluded that the top interface in the metal carbide/HfO2 gate stacks causes the negative Φm,eff shift.  相似文献   

3.
This paper describes the heavy ion-induced effects on the electrical characteristics of reactively sputtered ZrO2 and Al2O3 high-k gate oxides deposited in argon plus nitrogen containing plasma. Radiation-induced degradation of sputtered high-k dielectric ZrO2/Si and Al2O3/Si interface was studied using 45?MeV Li3+ ions. The devices were irradiated with Li3+ ions at various fluences ranging from 5?×?109 to 5?×?1012?ions/cm2. Capacitance–voltage and current–voltage characteristics were used for electrical characterization. Shift in flat band voltage towards negative value was observed in devices after exposure to ion radiation. Post-deposition annealing effect on the electrical behavior of high-k/Si interface was also investigated. The annealed devices showed better electrical and reliability characteristics. Different device parameters such as flat band voltage, leakage current, interface defect density and oxide-trapped charge have been extracted.The surface morphology and roughness values for films deposited in nitrogen containing plasma before and after ion radiation are extracted from Atomic Force Microscopy.  相似文献   

4.
This paper reports that the high-K HfO2 gate dielectrics are fabricated on n-germanium substrates by sputtering Hf on Ge and following by a furnace annealing. The impacts of sputtering ambient, annealing ambient and annealing temperature on the electrical properties of high-K HfO2 gate dielectrics on germanium substrates are investigated. Experimental results indicate that high-K HfO2 gate dielectrics on germanium substrates with good electrical characteristics are obtained, the electrical properties of high-K HfO2 gate dielectrics is strongly correlated with sputtering ambient, annealing ambient and annealing temperature.  相似文献   

5.
Chemical reactivity of fluorine molecule (F2)-germanium (Ge) surface and dissociation of fluorine (F)-Ge bonding have been simulated by semi-empirical molecular orbital method theoretically, which shows that F on Ge surface is more stable compared to hydrogen. Ge MIS (metal insulator semiconductor) capacitor has been fabricated by using F2-treated Ge(1 0 0) substrate and HfO2 film deposited by photo-assisted MOCVD. Interface state density observed as a hump in the C-V curve of HfO2/Ge gate stack and its C-V hysteresis were decreased by F2-treatment of Ge surface. XPS (X-ray photoelectron spectroscopy) depth profiling reveals that interfacial layer between HfO2 and Ge is sub-oxide layer (GeOx or HfGeOx), which is believed to be origin of interface state density.F was incorporated into interfacial layer easily by using F2-treated Ge substrate. These results suggest that interface defect of HfO2/Ge gate stack structure could be passivated by F effectively.  相似文献   

6.
When S-termination on a Ge(1 0 0) surface was desorbed at an elevated temperature and an atomic layer deposition (ALD) HfO2 film was deposited, interfacial thickness was less than 1 nm. As a result, the equivalent oxide thickness (EOT) of the stack on the initially S-terminated surface was thinner than that deposited on the O3-oxidized surface, while HfO2 film thickness was almost identical on both surfaces. Nevertheless, the HfO2 stack on the initially S-terminated surface exhibited improved leakage current characteristics due to an increase in barrier height. Its thinner but robust interface will contribute to the scaling down of gate oxide integrity.  相似文献   

7.
Synchrotron radiation photoemission spectroscopy and optical transmission spectrum measurements have been performed on an HfO2 thin film grown on a Si(100) substrate to determine the band structure of the HfO2/Si stack. The result shows a valence-band offset of 2.5 eV and a conduction-band offset of 2.2 eV for the HfO2/Si interface. The Schottky barrier height between Au and HfO2 is obtained from current density–voltage measurement. The characterization reveals that the dominant conduction mechanism in the region of low field under gate injection is Schottky emission. The energy-band diagram of an Au–HfO2–Si MOS stack was obtained from these results.  相似文献   

8.
This paper discusses the effect of N 2 plasma treatment before dielectric deposition on the electrical performance of a Al2O3 /AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor(MISHEMT),with Al2O3 deposited by atomic layer deposition.The results indicated that the gate leakage was decreased two orders of magnitude after the Al2O3 /AlGaN interface was pretreated by N 2 plasma.Furthermore,effects of N 2 plasma pretreatment on the electrical properties of the AlGaN/Al2O3 interface were investigated by x-ray photoelectron spectroscopy measurements and the interface quality between Al2O3 and AlGaN film was improved.  相似文献   

9.
La-doped HfO2 gate dielectric thin films have been deposited on Si substrates using La(acac)3 and Hf(acac)4 (acac = 2,4-pentanedionate) mixing sources by low-pressure metal-organic chemical vapor deposition (MOCVD). The structure, thermal stability, and electrical properties of La-doped HfO2 films have been investigated. Inductive coupled plasma analyses confirm that the La content ranging from 1 to 5 mol% is involved in the films. The films show smaller roughness of ∼0.5 nm and improved thermal stability up to 750 °C. The La-doped HfO2 films on Pt-coated Si and fused quartz substrates have an intrinsic dielectric constant of ∼28 at 1 MHz and a band gap of 5.6 eV, respectively. X-ray photoelectron spectroscopy analyses reveal that the interfacial layer is Hf-based silicate. The reliable value of equivalent oxide thickness (EOT) around 1.2 nm has been obtained, but with a large leakage current density of 3 A/cm2 at Vg = 1V + Vfb. MOCVD-derived La-doped HfO2 is demonstrated to be a potential high-k gate dielectric film for next generation metal oxide semiconductor field effect transistor applications.  相似文献   

10.
A new process of oxidizing 6H-SiC in dry O2+trichloroethylene (TCE) is used to incorporate chlorine in SiO2. The interface quality and the reliability of 6H-SiC MOS capacitors with gate dielectrics prepared by the process are examined. As compared to the conventional dry O2 oxidation, the O2+TCE oxidation results in lower interface-state density, reduced oxide-charge density and enhanced reliability. This could be attributed to the passivation effects of Cl2 and HCl on the structural defects at/near the SiC/SiO2 interface, and also their gettering effects on ion contamination. Moreover, post-oxidation NO annealing, especially in a wet ambient, can further decrease the interface-state density and the oxide-charge density. Lastly, an increased oxidation rate induced by TCE is observed and should be useful for reducing the normally high thermal budget of oxide growth. All these are very attractive for fabricating SiC MOSFETs with high inversion-channel mobility and high hot-carrier reliability. PACS 85.30.Tv; 81.65.Mq; 81.05.Hd; 85.30.De; 73.20.At  相似文献   

11.
We have applied the spectroscopic photoemission and low energy electron microscope to study high-k gate dielectrics and have performed the following in situ operations during ultrahigh vacuum annealing: real-time observation of surface morphology and microregion photoelectron spectroscopy measurements. Changes in surface morphology and electronic states were consistent with the models previously reported in the case of HfO2/Si. No clear differences between void regions and nonvoid regions have been observed in microregion photoelectron spectra for poly-Si/HfO2/Si, regardless of phase separation in real space. These results have suggested that the initial void formation occurs in about 100-nm wide regions for both HfO2/Si and poly-Si/HfO2/Si.  相似文献   

12.
Sandwich-structure Al2O3/HfO2/Al2O3 gate dielectric films were grown on ultra-thin silicon-on-insulator (SOI) substrates by vacuum electron beam evaporation (EB-PVD) method. AFM and TEM observations showed that the films remained amorphous even after post-annealing treatment at 950 °C with smooth surface and clean silicon interface. EDX- and XPS-analysis results revealed no silicate or silicide at the silicon interface. The equivalent oxide thickness was 3 nm and the dielectric constant was around 7.2, as determined by electrical measurements. A fixed charge density of 3 × 1010 cm−2 and a leakage current of 5 × 10−7A/cm2 at 2 V gate bias were achieved for Au/gate stack /Si/SiO2/Si/Au MIS capacitors. Post-annealing treatment was found to effectively reduce trap density, but increase in annealing temperature did not made any significant difference in the electrical performance.  相似文献   

13.
Interface models and processing technologies are reviewed for successful establishment of surface passivation, interface control and MIS gate stack formation in III-V nanoelectronics. First, basic considerations on successful surface passivation and interface control are given, including review of interface models for the band alignment at interfaces, and effects of interface states in nanoscale devices. Then, a brief review is given on currently available surface passivation technologies for III-V materials, including the Si interface control layer (ICL)-based passivation scheme by the authors’ group. The Si-ICL technique has been successfully applied to surface passivation of nanowires and to formation of a HfO2 high-k dielectric/GaAs interfaces with low values of the interface state density.  相似文献   

14.
Trimethylaluminum pretreatment prior to HfO2 deposition is introduced for native oxide reduction. It is identified that the trimethylaluminum pretreatment could effectively reduce native oxide, which is transformed to an aluminum oxide interfacial layer. Formation of the thin aluminum oxide layer suppresses Ge diffusion into HfO2, reducing hysteresis in the ca‐ pacitance–voltage curve. Moreover, the device reliability of the trimethylaluminum pretreated sample is improved in a constant current stress test. This work indicates that trimethylaluminum pretreatment is an effective in‐situ method for the gate dielectric stack formation to reduce charge trapping in the HfO2 film on a Ge substrate. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this work, the influence of Si/SiO2 interface properties, interface nitridation and remote-plasma-assisted oxidation (RPAO) thickness (<1 nm), on electrical performance and TDDB characteristics of sub-2 nm stacked oxide/nitride gate dielectrics has been investigated using a constant voltage stress (CVS). It is demonstrated that interfacial plasma nitridation improves the breakdown and electrical characteristics. In the case of PMOSFETs stressed in accumulation, interface nitridation suppresses the hole traps at the Si/SiO2 interface evidenced by less negative Vt shifts. Interface nitridation also retards hole tunneling between the gate and drain, resulting in reduced off-state drain leakage. In addition, the RPAO thickness of stacked gate dielectrics shows a profound effect in device performance and TDDB reliability. Also, it is demonstrated that TDDB characteristics are improved for both PMOS and NMOS devices with the 0.6 nm-RPAO layer using Weibull analysis. The maximum operating voltage is projected to be improved by 0.3 V difference for a 10-year lifetime. However, physical breakdown mechanism and effective defect radius during stress appear to be independent of RPAO thickness from the observation of the Weibull slopes. A correlation between trap generation and dielectric thickness changes based on the C-V distortion and oxide thinning model is presented to clarify the trapping behavior in the RPAO and bulk nitride layer during CVS stress.  相似文献   

16.
The thermal stability and the electrical properties of HfO2 and Hf–aluminate films prepared by the pulsed laser deposition technique have been investigated by X-ray diffraction, differential thermal analysis, capacitance–voltage correlation, leakage-current measurements and high-resolution transmission electron microscopy observation, respectively. A crystallization transformation from HfO2 amorphous phase to polycrystalline monoclinic structure occurs at about 500 °C. In contrast, the amorphous structure of Hf–aluminate films remains stable at higher temperatures up to 900 °C. Rapid thermal annealing at 1000 °C for 3 min leads to a phase separation in Hf–aluminate films. Tetragonal HfO2(111) is predominant, and Al2O3 separates from Hf–aluminate and is still in the amorphous state. The dielectric constant of amorphous HfO2 and Hf–aluminate films was determined to be about 26 and 16.6, respectively, by measuring a Pt/dielectric film/Pt capacitor structure. A very small equivalent oxide thickness (EOT) value of 0.74 nm for a 3-nm physical thickness Hf–aluminate film on a n-Si substrate with a leakage current of 0.17 A/cm2 at 1-V gate voltage was obtained. The interface at Hf–aluminate/Si is atomically sharp, while a thick interface layer exists between the HfO2 film and the Si substrate, which makes it difficult to obtain an EOT of less than 1 nm. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

17.
HfO2 films 5 nm thick grown on Si(100) substrates by the methods of MOCVD hydride epitaxy and atomic layer deposition (ALD) are studied using X-ray photoelectron spectroscopy combined with Ar+ ion etching and X-ray reflectometry. It is found that (i) the ALD-grown HfO2 films are amorphous, while the MOCVD-grown films show signs of a crystal structure; (ii) the surface of the ALD-grown films is more prone to contamination and/or is more reactive; and (iii) the amount of interfacial silicon dioxide in the case of the MOCVD-grown film is greater than in the case of the films synthesized by ALD. It is also shown that the argon ion etching of the HfO2 film results in the formation of a metallic hafnium layer at the interface. This indicates that HfO2 can be used not only as a gate dielectric but also as a material suitable for fabricating nanodimensional conductors by direct decomposition.  相似文献   

18.
The characteristics of resistive switching of TiN/HfO2/Ti/HfO2/Pt/Ti stacks on SiO2/Si substrates were investigated and compared to TiN/HfO2/Pt/Ti stacks in order to study Ti interlayer effects on resistive switching. The Ti interlayers were deposited in situ during the reactive sputtering of HfO2 films. The current–voltage measurements showed that the Ti interlayers enhanced the memory window but reduced the endurance of SET/RESET operations. The energy filtered images by TEM showed asymmetric oxygen accumulation at the Ti/HfO x interfaces. Subsequent heat treatment improved the endurance of SET/RESET operation of TiN/HfO2/Ti/HfO2/Pt/Ti stacks.  相似文献   

19.
Thermal stability, interfacial structures and electrical properties of amorphous (La2O3)0.5(SiO2)0.5 (LSO) films deposited by using pulsed laser deposition (PLD) on Si (1 0 0) and NH3 nitrided Si (1 0 0) substrates were comparatively investigated. The LSO films keep the amorphous state up to a high annealing temperature of 900 °C. HRTEM observations and XPS analyses showed that the surface nitridation of silicon wafer using NH3 can result in the formation of the passivation layer, which effectively suppresses the excessive growth of the interfacial layer between LSO film and silicon wafer after high-temperature annealing process. The Pt/LSO/nitrided Si capacitors annealed at high temperature exhibit smaller CET and EOT, a less flatband voltage shift, a negligible hysteresis loop, a smaller equivalent dielectric charge density, and a much lower gate leakage current density as compared with that of the Pt/LSO/Si capacitors without Si surface nitridation.  相似文献   

20.
Hafnium oxide (HfO2) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(1 0 0) substrates under varying growth temperature (Ts). HfO2 ceramic target has been employed for sputtering while varying the Ts from room temperature to 500 °C during deposition. The effect of Ts on the growth and microstructure of deposited HfO2 films has been studied using grazing incidence X-ray diffraction (GIXRD), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive X-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO2 films. Structural characterization indicates that the HfO2 films grown at Ts < 200 °C are amorphous while films grown at Ts > 200 °C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts = 200 °C. Nanocrystalline HfO2 films crystallized in a monoclinic structure with a (−1 1 1) orientation. An interface layer (IL) formation occurs due to reaction at the HfO2-Si interface for HfO2 films deposited at Ts > 200 °C. The thickness of IL increases with increasing Ts. EDS at the HfO2-Si cross-section indicate that the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts. The current-voltage characteristics indicate that the leakage current increases significantly with increasing Ts due to increased ILs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号