首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The fundamental nature of Ti(III) complexes generated in tetrahydrofuran by reduction of Cp(2)TiCl(2) has been clarified by means of cyclic voltammetry and kinetic measurements. While the electrochemical reduction of Cp(2)TiCl(2) leads to the formation of Cp(2)TiCl(2)(-), the use of metals such as Zn, Al, or Mn as reductants affords Cp(2)TiCl and (Cp(2)TiCl)(2) in a mixture having a dimerization equilibrium constant of 3 x 10(3) M(-)(1), independent of the metal used. Thus, we find it unlikely that the trinuclear complexes or ionic clusters known from the solid phase should be present in solution as previously suggested. The standard potentials determined for the redox couples Cp(2)TiCl(2)/Cp(2)TiCl(2)(-), (Cp(2)TiCl)(2)(+)/(Cp(2)TiCl)(2), Cp(2)TiCl(+)/Cp(2)TiCl, and Cp(2)Ti(2+)/Cp(2)Ti(+) increase in the order listed. However, the reactivity of the different Ti(III) complexes is assessed as (Cp(2)TiCl)(2) greater, similar Cp(2)TiCl approximately Cp(2)Ti(+) > Cp(2)TiCl(2)(-) in their reactions with benzyl chloride and benzaldehyde. None of the reactions proceed by an outer-sphere electron transfer pathway, and clearly the inner-sphere character is much higher in the case of Cp(2)Ti(+) than for (Cp(2)TiCl)(2), Cp(2)TiCl, and in particular Cp(2)TiCl(2)(-). As to the electron acceptor, the inner-sphere character increases, going from benzyl chloride to benzaldehyde, and it is suggested that the chlorine atom in benzyl chloride and the oxygen atom in benzaldehyde may function as bridges between the reactants in the transition state.  相似文献   

2.
于秀娟  周定 《电化学》2000,6(2):233-237
本文研究了石墨、银、钛基RuO2 /TiO2 涂层材料等几种导电材料取代铂作为葡萄糖传感器阴极的可能性 .结果表明 ,钛基RuO2 /TiO2 涂层电极的化学性质稳定 ,对析氢反应有一定的催化作用 .由石墨_环氧胶粘剂混合物—钛基RuO2 /TiO2 组成的电化学体系可以在 0 .6~ 0 .8V电压范围内检测H2 O2 的稳态氧化电流 ;在 0 .7V电压下 ,以钛基RuO2 /TiO2 涂层材料作为阴极的葡萄糖传感器的性能与以铂片为阴极的传感器性能接近 ,钛基RuO2 /TiO2 涂层材料是取代铂的最佳阴极材料 .  相似文献   

3.
We report that the cis/trans ratio of the proline peptide bond can be strongly influenced by the chirality of the acyl residue preceding proline. Acyl moieties derived from (2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) in acyl-Pro molecules influence isomerization of the proline peptide bond constraining the omega dihedral angle to the trans orientation. Structures of benzyl (2S)-1-([(2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl)-2-pyrrolidinecarboxylate (3) derived from 2D (1)H NMR conformational analysis and crystallographic data exhibit only the trans conformation of proline peptide bond. On the other hand the diastereomer 4, which contains an (R) acyl moiety, exhibits two sets of signals in (1)H NMR spectra. The signals were assigned to trans (72%) and cis (28%) conformers. Crystallographic analysis of 4 showed that only the cis conformation is present in the crystalline state. The (1)H NMR chemical shift pattern of three sets of signals observed in 2 was observed also in benzyl (2S)-1-[(2R/S)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate. (R)-Carboxylic acid 5, after coupling with (S)-ProOBn, yielded benzyl (2S)-1-[(2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate (6), which in DMSO-d(6) exhibited only the trans conformation of the proline peptide bond. These results suggest that in these particular cases acyl-Pro peptide bond isomerization is strongly influenced by the stereochemistry of the acyl residue preceding proline. (2S)-2,6-Dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) are promising chiral peptidomimetic building blocks that can be used as acyl moieties to force the proline peptide bond into the trans conformation in a variety of acyl-Pro molecules.  相似文献   

4.
p-tert-Butylcalix[4]arene, [CalixBut(OH)4], reacts with Mo(PMe3)6 and W(PMe3)4(eta2-CH2PMe2)H to yield compounds of composition {[CalixBut(OH)2(O)2]M(PMe3)3H2} which exhibit unprecedented use of a C-H bond of a calixarene methylene group as a binding functionality in the form of agostic and alkyl hydride derivatives. Thus, X-ray diffraction studies demonstrate that, in the solid state, the molybdenum complex [CalixBut(OH)2(O)2]Mo(PMe3)3H2 exists as an agostic derivative with a Mo...H-C interaction, whereas the tungsten complex exists as a metallated trihydride [Calix-HBut(OH)2(O)2]W(PMe3)3H3. Solution 1H NMR spectroscopic studies, however, provide evidence that [Calix-HBut(OH)2(O)2]W(PMe3)3H3 is in equilibrium with its agostic isomer [CalixBut(OH)2(O)2]W(PMe3)3H2. Dynamic NMR spectroscopy also indicates that the [M(PMe3)3H2] fragments of both the molybdenum and tungsten complexes [CalixBut(OH)2(O)2]M(PMe3)3H2 migrate rapidly around the phenolic rim of the calixarene on the NMR time scale, an observation that is in accord with incorporation of deuterium into the methylene endo positions upon treatment of the isomeric mixture of [CalixBut(OH)2(O)2]W(PMe3)3H2 and [Calix-HBut(OH)2(O)2]W(PMe3)3H3 with D2. Treatment of {[CalixBut(OH)2(O)2]W(PMe3)3H2} with Ph2C2 gives the alkylidene complex [CalixBut(O)4]W=C(Ph)Ar [Ar = PhCC(Ph)CH2Ph].  相似文献   

5.
Addition of 1.5 equiv of I2 to a THF solution of UI3(THF)4, containing either 6 equiv of tBuNH2 or 2 equiv of RNH2 (R = Ph, 3,5-(CF3)2C6H3, 2,6-(iPr)2C6H3) and 4 equiv of NEt3, generates orange solutions containing U(NtBu)2I2(THF)2 (1) or U(NAr)2I2(THF)3 (Ar = Ph, 2; 3,5-(CF3)2C6H3, 3; 2,6-(iPr)2C6H3, 4), respectively, all of which can be isolated in good yields. Alternatively, 1 can be prepared by reaction of uranium metal with 3 equiv of I2 and 6 equiv of tBuNH2, also in good yield. Complexes 1-4 have been characterized by X-ray crystallography, and each of these complexes exhibits linear N-U-N linkages and short U-N bonds. Using density functional theory simulations of complexes 1 and 2, two triple bonds between the metal center and the nitrogen ligands were identified. Complexes 1 and 2 readily react with neutral Lewis bases such as pyridine or Ph3PO to form U(NR)2I2(L)2 (R = tBu, L = py, 5; Ph3PO, 7; R = Ph, L = py, 6; Ph3PO, 8), and with PMe3 to form U(NR)2I2(THF)(PMe3)2 (R = tBu, 9; Ph, 10). The solid-state molecular structures of 5, 7, and 9 have been determined by X-ray crystallography, and these complexes, like their parent compounds, exhibit linear N-U-N angles and short U-N bonds. Complexes 1 and 2 also react with AgOTf in CH2Cl2, forming U(NR)2(OTf)2(THF)3 (R = tBu, 11; Ph, 12) after recrystallization from THF. Crystals of 12 grown from CH2Cl2 were found to contain a dimer, [U(NPh)2(OTf)2(THF)2]2, a complex possessing bridging triflate groups.  相似文献   

6.
本文较为全面地综述了Gaussian-1,Gaussian-2(简称G1,G2)理论以及简化的G2(MP2),G2(MP3)理论,将其主要结果进行了比较分析。关于G2理论的应用,除了较为详细地综述了几年来理论在重现实验数据、评价实验数据、预测实验数据及研究化学反应途径等方面的应用外,还结合我们近期研究结果的主要结论讨论了该理论在研究等电子-等自旋,价层等电-等旋,等旋及非等旋化学反应的能量计算中的应用情况,以及该理论在预测化合物的标准生成焓方面的应用情况。  相似文献   

7.
Five new monocationic dihydrogen complexes of ruthenium of the type trans-[RuCl(eta(2)-H(2))(PP)(2)][BF(4)] (PP = bis-1,2(diarylphosphino)ethane, aryl = p-fluorobenzyl, 1a, benzyl, 2a, m-methylbenzyl, 3a, p-methylbenzyl, 4a, p-isopropylbenzyl, 5a) have been prepared by protonating the precursor hydride complexes trans-[RuCl(H)(PP)(2)] using HBF(4).OEt(2). The dihydrogen complexes are quite stable and have been isolated in the solid state. The intact nature of the H-H bond in these derivatives has been established from the short spin-lattice relaxation times (T1, ms) and observation of substantial H, D couplings in the HD isotopomers. The H-H bond distances (dHH, A) increase systematically from 0.97 to 1.03 A as the electron-donor ability of the substituent on the diphosphine ligand increases from the p-fluorobenzyl to the p-isopropylbenzyl moiety. The d(HH) in trans-[Ru(eta(2)-H(2))(Cl)((C(6)H(5)CH(2))(2)PCH(2)CH(2)P(CH(2)C(6)H(5))(2))(2)][BF(4)], 2a, was found to be 1.08(5) A by X-ray crystallography. In addition, two new 16-electron dicationic dihydrogen complexes of the type [Ru(eta(2)-H(2))(PP)(2)][OTf](2) (PP = (ArCH(2))(2)PCH(2)CH(2)P(CH(2)Ar)(2), Ar = m-CH(3)C(6)H(4-), 6a, p-CH(3)C(6)H(4)-, 7a) have also been prepared and characterized. These derivatives were found to possess elongated dihydrogen ligands.  相似文献   

8.
The kinetics of the slow oxidation of CO in the presence of H2 have been studied above the second explosion limit for the mixture 2CO + O2 + X% H2 at the temperature range of 530–570°C, pressures from 300 to 530 torr, and hydrogen contents of 1.1, 2.8, and 5.7%. The second explosion limit has been experimentally determined for the mixture of 2CO + O2 containing 1.0, 3.0, and 5.7% H2. On the basis of the oxidation scheme of CO in the presence of H2, which includes the accepted mechanism of oxidation of hydrogen supplemented by the reactions in which CO takes part, the second explosion limit and the profiles of the slow reaction are calculated by computer methods. The agreement found between experimental and calculated values allows one to conclude that the scheme under consideration rather completely described the slow reaction above the second limit and the occurrence of the second explosion limit in the mixture CO–O2–H2. The rate constant for the reaction HO2 + CO → OH + CO2 was calculated from the experimental data and was found to agree with previous determinations.  相似文献   

9.
Catalysts based on Mn-substituted cordierite 2MnO · 2Al2O3 · 5SiO2 have been synthesized using different manganese oxides (MnO, Mn2O3, and MnO2) at a calcination temperature of 1100°C. The catalysts differ in their physicochemical properties, namely, phase composition (cordierite content and crystallinity), manganese oxide distribution and dispersion, texture, and activity in high-temperature ammonia oxidation. The synthesis involving MnO yields Mn-substituted cordierite with a defective structure, because greater part of the manganese cations is not incorporated in this structure and is encapsulated and the surface contains a small amount of manganese oxides. This catalyst shows the lowest ammonia oxidation activity. The catalysts prepared using Mn2O3 or MnO2 are well-crystallized Mn-substituted cordierite whose surface contains different amounts of manganese oxides differing in their particle size. They ensure a high nitrogen oxides yield in a wide temperature range. The product yield increases with an increasing surface concentration of Mn3+ cations. The highest NOx yield (about 76% at 800–850°C) is observed for the MnO2-based catalyst, whose surface contains the largest amount of manganese oxides.  相似文献   

10.
To provide insight on the reaction mechanism of the methyperoxy (CH(3)O(2)?) self-reaction, stationary points on both the spin-singlet and the spin-triplet potential energy surfaces of 2(CH(3)O(2)?) have been searched at the B3LYP/6-311++G(2df,2p) level. The relative energies, enthalpies, and free energies of these stationary points are calculated using CCSD(T)/cc-pVTZ. Our theoretical results indicate that reactions on a spin-triplet potential energy surface are kinetically unfavorable due to high free energy barriers, while they are more complicated on the spin-singlet surface. CH(3)OOCH(3) + O(2)(1) can be produced directly from 2(CH(3)O(2)?), while in other channels, three spin-singlet chain-structure intermediates are first formed and subsequently dissociated to produce different products. Besides the dominant channels producing 2CH(3)O? + O(2) and CH(3)OH + CH(2)O + O(2) as determined before, the channels leading to CH(3)OOOH + CH(2)O and CH(3)O? + CH(2)O + HO(2)? are also energetically favorable in the self-reaction of CH(3)O(2)? especially at low temperature according to our results.  相似文献   

11.
本文以具有绿色无毒、高性能、低成本等诸多优势的N_2O-C_2烃类燃料单元复合推进剂(即NOFBX)为对象,首先发展了包含52组分、325反应的燃烧化学反应机理模型。该机理不仅能够准确计算N_2O热解过程中重要组分的分布,而且能够在较宽的温度、压力、化学计量比范围内准确预测N_2O-C_2烃类燃料体系的着火延迟时间和层流火焰传播速度。鉴于本文提出的N_2O-C_2烃类燃料反应机理具有机理规模小、实验验证充分的特点,有望在NOFBX发动机的多维燃烧数值模拟中得到广泛应用。  相似文献   

12.
The dehydratase (DH) domain of module 4 of the 6-deoxyerythronolide B synthase (DEBS) has been shown to catalyze an exclusive syn elimination/syn addition of water. Incubation of recombinant DH4 with chemoenzymatically prepared anti-(2R,3R)-2-methyl-3-hydroxypentanoyl-ACP (2a-ACP) gave the dehydration product 3-ACP. Similarly, incubation of DH4 with synthetic 3-ACP resulted in the reverse enzyme-catalyzed hydration reaction, giving an ~3:1 equilbrium mixture of 2a-ACP and 3-ACP. Incubation of a mixture of propionyl-SNAC (4), methylmalonyl-CoA, and NADPH with the DEBS β-ketoacyl synthase-acyl transferase [KS6][AT6] didomain, DEBS ACP6, and the ketoreductase domain from tylactone synthase module 1 (TYLS KR1) generated in situ anti-2a-ACP that underwent DH4-catalyzed syn dehydration to give 3-ACP. DH4 did not dehydrate syn-(2S,3R)-2b-ACP, syn-(2R,3S)-2c-ACP, or anti-(2S,3S)-2d-ACP generated in situ by DEBS KR1, DEBS KR6, or the rifamycin synthase KR7 (RIFS KR7), respectively. Similarly, incubation of a mixture of (2S,3R)-2-methyl-3-hydroxypentanoyl-N-acetylcysteamine thioester (2b-SNAC), methylmalonyl-CoA, and NADPH with DEBS [KS6][AT6], DEBS ACP6, and TYLS KR1 gave anti-(2R,3R)-6-ACP that underwent syn dehydration catalyzed by DEBS DH4 to give (4R,5R)-(E)-2,4-dimethyl-5-hydroxy-hept-2-enoyl-ACP (7-ACP). The structure and stereochemistry of 7 were established by GC-MS and LC-MS comparison of the derived methyl ester 7-Me to a synthetic sample of 7-Me.  相似文献   

13.
The infrared spectrum of the mixed water dimer H2O·D2O has been observed at 20 K in a nitrogen matrix. The O-H(D) … O stretching vibrations are found to be slightly shifted compared to the corresponding vibrations in (H2O)2 and (D2O)2. The results are interpreted as evidence for the open dimer structure of Tursi and Nixon.  相似文献   

14.
Intramolecularly OHO[double bond, length as m-dash]C hydrogen bonded phenols, 2-HO-C6H2-3,5-(t-Bu)2-CONH-t-Bu (1-OH), 2-HO-C6H2-5-t-Bu-1,3-(CONH-t-Bu)2 (2-OH) and 2-HO-C6H2-3,5-(t-Bu)2-NHCO-t-Bu (4-OH), were synthesized and their phenolate anions were prepared as tetraethylammonium salts (-1O-(NEt4+), 2-O-(NEt4+) and 4-O-(NEt4+)) with intramolecular NHO(oxyanion) hydrogen bonds. 4-HO-C(6)H(2)-3,5-t-Bu(2)-CONH-t-Bu (3-OH) and its phenolate anion, 3-O-(NEt4+), were synthesized as non-hydrogen bonded references. The presence of intramolecular hydrogen bonds was established through the crystallographic analysis and/or (1)H NMR spectroscopic results. Intramolecular NHO(phenol) hydrogen bonds shift the pK(a) of the phenol to a more acidic value. The results of cyclic voltammetry show that the intramolecular OH...O=C hydrogen bond negatively shifts the oxidation potential of the phenol. In contrast, the intramolecular NHO(oxyanion) hydrogen bond positively shifts the oxidation potential of the phenolate anion, preventing oxidation. These contributions of the hydrogen bond to the pKa value and the oxidation potentials probably play an important role in the formation of a tyrosyl radical in photosystem II.  相似文献   

15.
The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol.  相似文献   

16.
A recent puzzle in nonadiabatic quantum dynamics is that geometric phase (GP) effects are present in the state-to-state opacity functions of the hydrogen-exchange reaction, but cancel out in the state-to-state integral cross sections (ICSs). Here the authors explain this result by using topology to separate the scattering amplitudes into contributions from Feynman paths that loop in opposite senses around the conical intersection. The clockwise-looping paths pass over one transition state (1-TS) and scatter into positive deflection angles; the counterclockwise-looping paths pass over two transition states (2-TS) and scatter into negative deflection angles. The interference between the 1-TS and 2-TS paths thus integrates to a very small value, which cancels the GP effects in the ICS. Quasiclassical trajectory (QCT) calculations reproduce the scattering of the 1-TS and 2-TS paths into positive and negative deflection angles and show that the 2-TS paths describe a direct insertion mechanism. The inserting atom follows a highly constrained "S-bend" path, which allows it to avoid both the other atoms and the conical intersection and forces the product diatom to scatter into high rotational states. By contrast, the quantum 2-TS paths scatter into a mainly statistical distribution of rotational states, so that the quantum 2-TS total ICS is roughly twice the QCT ICS at 2.3 eV total energy. This suggests that the S-bend constraint is relaxed by tunneling in the quantum system. These findings on H+H(2) suggest that similar cancellations or reductions in GP effects are likely in many other reactions.  相似文献   

17.
The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.  相似文献   

18.
The role of the base in the transmetalation step of the Suzuki-Miyaura cross-coupling reaction is analyzed computationally by means of DFT calculations with the Becke3LYP functional. The model system studied consists of Pd(CH=CH2)(PH3)2Br as the starting catalyst complex, CH2=CHB(OH)2 as the organoboronic acid, and OH- as the base. The two main mechanistic proposals, consisting of the base attacking first either the palladium complex or the organoboronic acid, are evaluated through geometry optimization of the corresponding intermediates and transition states. Supplementary calculations are carried out on the uncatalyzed reaction and on a process where the starting complex is Pd(CH=CH2)(PH3)2(OH). These calculations, considered together with available experimental data, strongly suggest that the main mechanism of transmetalation in the catalytic cycle starts with the reaction of the base and the organoboronic acid.  相似文献   

19.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

20.
The marker enzyme of the peroxisome—a phylogenetically old yet only recently discovered cell organelle—is catalase, a hemoprotein which decomposes hydrogen peroxide catalatically as well as peroxidatically. In the peroxisomes, catalase is associated with H2O2-producing oxidases and other enzymes. Also in parenchymal cells such as liver and kidney cells part of the reduction of oxygen occurs via formation of H2O2. A central role in peroxisomal H2O2-metabolism is played by the active intermediate, catalase-Fe3+-H2O2, (Compound I), which is distinguished from free catalase by specific absorption bands. Organ photometry on intact hemoglobin-free perfused rat liver in order to measure Compound I selectively provides a direct insight into the dynamics of the H2O2 metabolism which takes place in the range of nanomolar concentrations. Endogenously, 1g of liver forms approximately 50 nmol of H2O2 per min. The turnover number, which in the steady state is < 10 min?1 in the cell as compared to > 108 min?1 for the isolated enzyme with an excess of substrate, can be increased to approximately 102 min?1 by intracellular stimulation of the H2O2 production (e.g. by glycolate or urate). The peroxidatic oxidation of hydrogen donors (e.g. methanol and ethanol), favored relative to the catalase pathway at low turnover numbers, is of importance in normal metabolism and in pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号