首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This paper is concerned with determination of optimal run time for an economic production quantity (EPQ) model with scrap, rework, and stochastic machine breakdowns. In real life manufacturing systems, generation of defective items and random breakdown of production equipment are inevitable. In this study, a portion of the defective items is considered to be scrap, while the other is assumed to be repairable. Total production-inventory cost functions are derived respectively for both EPQ models with breakdown (no-resumption policy is adopted) and without breakdown taking place. These cost functions are integrated and the renewal reward theorem is used to cope with the variable cycle length. Theorems on conditional convexity of the integrated overall costs and bounds of the production run time are proposed and proved. We conclude that the optimal run time falls within the range of bounds and it can be pinpointed by the use of the bisection method based on the intermediate value theorem. Numerical example is provided to demonstrate its practical usages.  相似文献   

2.
Chuang-Chun Chiou  L. Ho-Chun Chen 《PAMM》2007,7(1):2060077-2060078
The classic EPQ model assumes that items are produced of perfect quality and no shortage is permitted. In the real world situation, however, due to process deterioration or other factors, the occurrence of imperfect quality items is inevitable. This paper develops an extended economic production quantity (EPQ) model with imperfect production, shortage, and imperfect rework. We assume that the quality scan is conducted during the production. The scanned imperfect items are classified as the repairable and scrap. We consider that not all of the repairable items can be restored to meet the specified quality standard. Only some portion of defective items can be restored as normal items, the other results in defective, due to repair failure, can be sold at a discounted price to a secondary market. The renewal reward theorem is utilized to deal with the variable cycle length. The production quantity and the shortage level are determined in an optimal manner so as to minimize the average system cost. A numerical example is used to demonstrate its practical usage. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We develop an economic production quantity (EPQ) model with random defective items and failure in repair. The existence of only one machine results with limited production capacity and shortages. The aim of this research is to derive the optimal cycle length, the optimal production quantity and the optimal back ordered quantity for each product so as to minimize the total expected cost (holding, shortage, production, setup, defective items and repair costs). The convexity of the model is derived and the objective function is proved convex. Two numerical examples illustrate the practical usage of the proposed method.  相似文献   

4.
The paper develops a two-echelon supply chain model with a single-buyer and a single-vendor. The buyer sells a seasonal product over a short selling period and its inventory is subject to deterioration at a constant rate over time. The vendor's production rate is dependent on the buyer's demand rate, which is a linear function of time. Also, the vendor's production process is not perfectly reliable; it may shift from an in-control state to an out-of-control state at any time during a production run and produce some defective (non-conforming) items. Assuming that the vendor follows a lot-for-lot policy for replenishment made to the buyer, the average total cost of the supply chain is derived and an algorithm for finding the optimal solution is developed. The numerical study shows that the supply chain coordination policy is more beneficial than those policies obtained separately from the buyer's and the vendor's perspectives.  相似文献   

5.
This article is concerned with determining the production–shipment policy for an economic production quantity model with quality assurance and an improved delivery schedule. We extend a recent work by Chiu et al. [Y.-S.P. Chiu, C.-A.K. Lin, H.-H. Chang, and V. Chiu, Mathematical modeling for determining economic batch size and optimal number of deliveries for EPQ model with quality assurance, Math. Comput. Model. Dyn. Sys. 16 (4) (2010), pp. 373–388] by incorporating an alternative delivery plan that aims at lowering the inventory holding cost for both supplier and buyer in such an integrated inventory system. Mathematical modelling along with Hessian matrix equations is used, and as a result the optimal production batch size and optimal number of deliveries are derived. A numerical example is provided to demonstrate the practical use of the results and the significant savings in stock holding costs for both vendor and buyer.  相似文献   

6.
This paper deals with an economic production quantity (EPQ) inventory model with reworkable defective items when a given multi-shipment policy is used. In this work, it is assumed that in each cycle, the rework process of all defective items starts when the regular production process finishes. After the rework process, a portion of reworked items fails. This portion becomes scrap and only the perfect finished items can be delivered to customers at the end of rework process. A profit function is derived to model the inventory problem and it is shown that the profit function is concave. Due to the complexity of the optimization problem, an algorithm is developed to determine the optimal values of manufacturing lot size and price such that the long-run average profit function is maximized. Furthermore, two special cases are identified and explained. Finally, a numerical example is given to illustrate the applicability of the proposed inventory model.  相似文献   

7.
The classical economic production quantity (EPQ) model assumes that items produced are of perfect quality and that the unit cost of production is fixed. However, in realistic situations, product quality is never perfect but is directly affected by the production processes and the quality assurance programme. In addition, the unit production cost is not fixed but increases with quality assurance expenses. We present an EPQ model with imperfect production processes and quality-dependent unit production cost. After discussion of the procedure for determining the optimal solution, a sensitivity analysis of the impacts of the cost parameters on the optimal solution is provided. Finally, the problems associated with cost estimation are addressed.  相似文献   

8.
Some classical studies on economic production quantity (EPQ) models with imperfect production processes have focused on determining the optimal production lot size. However, these models neglect the fact that the total production-inventory costs can be reduced by reworking imperfect items for a relatively small repair and holding cost. To account for the above phenomenon, we take the out of stock and rework into account and establish an EPQ model with imperfect production processes, failure in repair and complete backlogging. Furthermore, we assume that the holding cost of imperfect items is distinguished from that of perfect ones, as well as, the costs of repair, disposal, and shortage are all included in the proposed model. In addition, without taking complex differential calculus to determine the optimal production lot size and backorder level, we employ an arithmetic-geometric mean inequality method to determine the optimal solutions. Finally, numerical examples and sensitivity analysis are analyzed to illustrate the validity of the proposed model. Some managerial insights are obtained from the numerical examples.  相似文献   

9.
This paper derives the optimal replenishment policy for imperfect quality economic manufacturing quantity (EMQ) model with rework and backlogging. The classic EMQ model assumes that all items produced are of perfect quality. However, in real‐life manufacturing settings, generation of imperfect quality items is almost inevitable. In this study, a random defective rate is assumed. All items produced are inspected and the defective items are classified as scrap and repairable. A rework process is involved in each production run when regular manufacturing process ends, and a rate of failure in repair is also assumed. Unit disposal cost and unit repairing and holding costs are included in our mathematical modelling and analysis. The renewal reward theorem is employed in this study to cope with the variable cycle length. The optimal replenishment policy in terms of lot‐size and backlogging level that minimizes expected overall costs for the proposed imperfect quality EMQ model is derived. Special cases of the model are identified and discussed. Numerical example is provided to demonstrate its practical usage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The main purpose of this paper is to investigate the retailer’s optimal cycle time and optimal payment time under the supplier’s cash discount and trade credit policy within the economic production quantity (EPQ) framework. In this paper, we assume that the retailer will provide a full trade credit to his/her good credit customers and request his/her bad credit customers pay for the items as soon as receiving them. Under this assumption, we model the retailer’s inventory system as a cost minimization problem to determine the retailer’s optimal inventory cycle time and optimal payment time under the replenishment rate is finite. Then, an algorithm is established to obtain the optimal strategy. Finally, numerical examples are given to illustrate the theoretical results and obtain some managerial phenomena.  相似文献   

11.
In this paper, a multiproduct single-machine production system under economic production quantity (EPQ) model is studied in which the existence of only one machine causes a limited production capacity for the common cycle length of all products, the production defective rates are random variables, shortages are allowed and take a combination of backorder and lost sale, and there is a service rate constraint for the company. The aim of this research is to determine the optimal production quantity, the allowable shortage level, and the period length of each product such that the expected total cost, including holding, shortage, production, setup and defective items costs, is minimized. The mathematical model of the problem is derived for which the objective function is proved to be convex. Then, a derivative approach is utilized to obtain the optimal solution. Finally, two numerical examples in each of which a sensitivity analysis is performed on the model parameters, are provided to illustrate the practical usage of the proposed methodology.  相似文献   

12.
This paper investigates the finite replenishment inventory models of a single product with imperfect production process. In this process, a certain fraction or a random number of produced items are defective. These non-conforming items are rejected or reworked or if they reached to the customer, refunded. Here, a generalised unit cost function is formulated incorporating the several factors like raw material, labour, replenishment rate and others factors of the manufacturing system. The rate of replenishment is considered to be a variable. The selling price of an unit is determined by a mark-up over the production cost. Optimum production of the product is suggested to have maximum profit using a gradient based mathematical programming technique for optimization. Finally, numerical examples are given to illustrate the results and the significant features of the production system. As a particular case, the result of the perfect system (without defective items) are obtained. Also, the effect of changes in the selling rate, defectiveness, production cost and other parameters on the optimal average profit are graphically presented. Some interesting decisions regarding production policy are established.  相似文献   

13.
This paper is concerned with optimization of production run time that takes stochastic breakdown and the reworking of defective items into consideration. In a real‐life manufacturing process, production of imperfect quality items as well as random breakdowns of production equipment is inevitable. All defective items produced are assumed to be repairable through a rework process right after the regular production stops in each cycle. This research starts with derivations of the cost functions for production systems with breakdown (no‐resumption policy is considered) and without breakdown taking place, respectively. Then cost functions of both cases are integrated. Theorems on conditional convexity of the overall cost function and bounds for optimal production run time are proposed and proved. This study concludes that although the optimal run time cannot be expressed in a closed form, it falls within the range of bounds. Hence, it can be pinpointed by the use of the bisection method based on the intermediate value theorem. A numerical example is provided to demonstrate its practical usages. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The classical economic production quantity (EPQ) model assumes that items are produced by a perfectly reliable production process with a fixed set-up cost. While the reliability of the production process cannot be perfected cost-free, the set-up cost can be reduced by investment in flexibility improvement. In this paper, we propose an EPQ model with a flexible and imperfect production process. We formulate this inventory decision problem using geometric programming (GP), establish more general results using the arithmetic-geometric mean inequality, and solve the problem to obtain a closed-form optimal solution. Following the theoretical treatment, we provide a numerical example to demonstrate that GP has potential as a valuable analytical tool for studying a certain class of inventory control problems. Finally we discuss some aspects of sensitivity analysis of the optimal solution based on the GP approach.  相似文献   

15.
The paper develops a model to determine the optimal product reliability and production rate that achieves the biggest total integrated profit for an imperfect manufacturing process. The basic assumption of the classical Economic Manufacturing Quantity (EMQ) model is that all manufacturing items are of perfect quality. The assumption is not true in practice. Most of the production system produces perfect and imperfect quality items. In some cases the imperfect quality (non conforming) items are reworked at a cost to restore its quality to the original one. Rework cost may be reduced by improvements in product reliability (i.e., decreasing in product reliability parameter). Lower value of product reliability parameter results in increase development cost of production and also smaller quantity of nonconforming products. The unit production cost is a function of product reliability parameter and production rate. As a result, higher development cost increases unit production cost. The problem of optimal planning work and rework processes belongs to the broad field of production–inventory model which deals with all kinds of reuse processes in supply chains. These processes aim to recover defective product items in such a way that they meet the quality level of ‘good item’. The benefits from imperfect quality items are: regaining the material and value added on defective items and improving the environment protection. In this point of view, a model is introduced here to guide a firm/industry in addressing variable product reliability factor, variable unit production cost and dynamic production rate for time-varying demand. The paper provides an optimal control formulation of the problem and develops necessary and sufficient conditions for optimality of the dynamic variables. In this purpose, the Euler–Lagrange method is used to obtain optimal solutions for product reliability parameter and dynamic production rate. Finally, numerical examples are given to illustrate the proposed model.  相似文献   

16.
The purpose of this paper is to investigate and propose a fuzzy extended economic production quantity model based on an elaboratively modeled unit cost structure. This unit cost structure consists of the various lot-size correlative components such as on-line setups, off-line setups, initial production defectives, direct material, labor, and depreciation in addition to lot-size non-correlative items. Thus, the unit cost is correlatively modeled to the production quantity. Therefore, the modeling or the annual total cost function developed consists of not only annual inventory and setup costs but also production cost. Moreover, via the concept of fuzzy blurred optimal argument and the vertex method of the α-cut fuzzy arithmetic (or fuzzy interval analysis), two solution approaches are proposed: (1) a fuzzy EPQ and (2) a compromised crisp EPQ in the fuzzy sense. An optimization procedure, which can simultaneously determine the α-cut-vertex combination of fuzzy parameters and the optimizing decision variable value, is also proposed. The sensitivity model for the fuzzy total cost and thus EPQ to the various cost factors is provided. Finally, a numerical example with the original data collected from a firm demonstrates the usefulness of the new model.  相似文献   

17.
In this paper, an optimal production inventory model with fuzzy time period and fuzzy inventory costs for defective items is formulated and solved under fuzzy space constraint. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is linearly stock dependent. The defective rate is taken as random, the inventory holding cost and production cost are imprecise. The fuzzy parameters are converted to crisp ones using credibility measure theory. The different items have the different imprecise time periods and the minimization of cost for each item leads to a multi-objective optimization problem. The model is under the single management house and desired inventory level and product cost for each item are prescribed. The multi-objective problem is reduced to a single objective problem using Global Criteria Method (GCM) and solved with the help of Fuzzy Riemann Integral (FRI) method, Kuhn–Tucker condition and Generalised Reduced Gradient (GRG) technique. In optimum results including production functions and corresponding optimum costs for the different models are obtained and then are presented in tabular forms.  相似文献   

18.
This paper considers production-maintenance policy for the deteriorating production system which can go ‘out of control’ while producing items. Once out of control, the production process produces some proportion of defective items. The defective items are reworked at some cost before being shipped, or, if passed to the customer, incur much larger warranty cost. Thus, to operate this system economically, periodic inspection and restoration of the process are needed. A mathematical model representing the expected annual cost is developed to determine the production cycle and process inspection intervals jointly. A case of equally spaced inspection intervals is solved by using an approximation to the cost function.  相似文献   

19.
In a real production and distribution business environment with one supplier and multiple heterogeneous buyers, the differences in buyers’ ordering cycles have influence on production arrangements. Consequently, the average inventory level (AIL) at the supplier’s end is affected by both the production policy and the ordering policy, typically by the scheduling of deliveries. Consequently, the average inventory holding cost is most deeply affected. In this paper, it is proposed that the scheduling of deliveries be formulated as a decision problem to determine the time point at which deliveries are made to buyers in order to minimize the supplier’s average inventory. A formulation of the average inventory level (AIL) in a production cycle at the supplier’s end using a lot-for-lot policy is developed. Under the lot-for-lot policy, the scheduling of deliveries (SP) is formulated as a nonlinear programming model used to determine the first delivery point for each buyer with an objective to minimize the sum of the product of the individual demand quantity and the first delivery time for each buyer. Thus, the SP model determines not only the sequence of the first deliveries to individual buyers, but also the time when the deliveries are made. An iterative heuristic procedure (IHP) is developed to solve the SP model assuming a given sequence of buyers. Six sequence rules are considered and evaluated via simulation.  相似文献   

20.
In the past, economic order quantity (EOQ) and economic production quantity (EPQ) were treated independently from the viewpoints of the buyer or the vendor. In most cases, the optimal solution for one player was non-optimal to the other player. In today’s competitive markets, close cooperation between the vendor and the buyer is necessary to reduce the joint inventory cost and the response time of the vendor–buyer system. The successful experiences of National Semiconductor, Wal-Mart, and Procter and Gamble have demonstrated that integrating the supply chain has significantly influenced the company’s performance and market share (Simchi-Levi et al. (2000) [1]). Recently, Yang et al. (2007) [2] presented an inventory model to determine the economic lot size for both the vendor and buyer, and the number of deliveries in an integrated two stage supply chain. In this paper, we present an alternative approach to determine the global optimal inventory policy for the vendor–buyer integrated system using arithmetic–geometric inequality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号