首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
合成了-系列新型水溶性大环席夫碱配体(Lx,x=2~4)及其锰(Ⅱ)配合物(MnLx),其结构经UV-Vis,<'1>H NMR,IR,MS和元素分析表征.采用邻苯三酚自氧化法测定了MnLx的超氧化物歧化酶(SOD)活性.结果表明,MnLx均具有良好的SOD活性.  相似文献   

2.
合成了5种氨基酸席夫碱Sal-Gly(甘氨酸席夫碱)、Sal-Glu(谷氨酸席夫碱)、Sal-Met(甲硫氨酸席夫碱)、Sal-Tyr(酪氨酸席夫碱)、Sal-Arg(精氨酸席夫碱)及其金属锌离子配合物共10种化合物.用元素分析、核磁共振、红外光谱、紫外-可见光谱等手段对其组成的结构进行表征.以Sal-Tyr-Zn为主体,咪唑(1),1-甲基-咪唑(2),2-乙基-4-甲基咪唑(3),吡唑(4),4-碘苯胺(5),DABCO(1,4-重氮双环[2,2,2]辛烷)(6),邻苯二胺(7)和1,2-环己二胺(8)为客体,进行配位相互作用研究.选取大肠杆菌作为抑菌菌种,研究了氨基酸席夫碱的抑菌能力.结果表明,氨基酸席夫碱配体及金属锌配合物对大肠杆菌均有抑菌活性,配体的抗菌活性随氨基酸残基的增大而减小.金属锌配合物的抑菌活性大于其所对应的氨基酸席夫碱配体的抑菌活性,活性最大的则为Sal-Arg-Zn.  相似文献   

3.
几个新的席夫碱合铜(Ⅱ)配合物的合成及性质研究   总被引:17,自引:0,他引:17  
有关席夫碱类配体及配合物的合成研究非常多,Padhye S.等曾概括过变更席夫碱配合物活性方式^[1],β-二酮席夫碱形成的金属配合物具有仿酶催化活性,在仿生研究中有重要意义;此外,氨基酸类席夫碱含有多个强电负性配位原子,具有较强的配位能力和多样的配位模式的优点,因此,我们合成结构较为复杂的氨基酸席夫碱及其与生命金属铜(II)的配合物,并对合成的配合物的抗菌活性进行了初步研究。  相似文献   

4.
设计合成了一系列不对称席夫碱-铝化合物1a~3a,考察了化合物在己内酯(CL)开环聚合反应中的催化性能,研究发现,配合物对CL聚合具有较高的反应活性,并具有活性聚合的特点,聚合反应均符合一级动力学反应特征.在其它条件相同时,吸电子取代的配合物的催化速率约为无吸电子的配合物的4倍,表明席夫碱配体上吸电子基团的存在可以提高配合物催化聚合的活性.  相似文献   

5.
以聚天冬氨酸为配体与不同二价金属离子,在水溶液中制备了聚天冬氨酸铁和聚天冬氨酸锰配合物。通过元素分析、红外光谱对配合物的化学组成与结构进行了初步表征,并利用改进的氮蓝四唑(NBT)光照法测定了其催化O2^.-歧化反应的SOD样活性。所合成的物质具有较高的SOD样活性,且分子量适中、水溶性好、无毒,有广阔的应用前景。  相似文献   

6.
0引言含硫席夫碱及其金属配合物具有抑菌、抗癌和抗病毒的生物活性[1 ̄3],有些含O、N席夫碱金属配合物具有仿酶催化活性[4,5]。而氨基酸席夫碱配合物具有良好的生物生理活性,近年来得到人们的普遍重视[6,7],同α-氨基酸席夫碱相比,β-氨基酸席夫碱由于氨基位置的变化而引起不同  相似文献   

7.
以聚天冬氨酸为配体与不同二价金属离子 ,在水溶液中制备了聚天冬氨酸铁和聚天冬氨酸锰配合物。通过元素分析、红外光谱对配合物的化学组成与结构进行了初步表征 ,并利用改进的氮蓝四唑 (NBT)光照法测定了其催化O2 · -歧化反应的SOD样活性。所合成的物质具有较高的SOD样活性 ,且分子量适中、水溶性好、无毒 ,有广阔的应用前景。  相似文献   

8.
阮敏  叶勇  谢微 《分析测试学报》2006,25(Z1):89-90
席夫碱及其金属配合物具有杀菌、抗菌、植物生长调节等生理活性,在医药、农药等领域有广泛的应用前景[1-2].含氟席夫碱及其配合物具有独特的生物活性, 在医药研究中备受关注[3-4]; 氨基酸席夫碱一直是人们感兴趣的研究课题,但对含氟的氨基酸席夫碱的研究未见报道.本文报道了4-氟苯甲醛与丙氨酸形成的席夫碱的合成方法及利用1H NMR、红外光谱、拉曼光谱、热重分析等测试手段进行表征的结果,化合物的生物活性研究正在进行.  相似文献   

9.
报道了2,6-二异丙基苯胺缩苯甲醛或2,4-二氯苯甲醛席夫碱(L1和L2)及其钯配合物(1和2)的合成,并通过元素分析、红外光谱、X-射线单晶衍射等方法对席夫碱配体及配合物进行了表征。通过与已报道的席夫碱L1及其钯配合物1结构相比较,发现引入吸电子取代基合成的一个新的席夫碱及其钯配合物(L2和2)对抑菌及催化活性有较大影响。抑菌活性试验表明,配体及配合物均具有良好的抑菌活性,配合物相对于配体具有更好的抑菌效果,配体苯环上的吸电子取代基能有效提高抑菌活性。研究了两组配合物(1和2)对溴代苯和丙烯酸Heck交叉偶联生成苯丙烯酸的催化性能,考察了不同反应因素(缚酸剂种类、反应温度及溶剂)对该反应的影响,确定了反应的最佳条件;催化实验结果显示吸电子基团的引入增加了钯配合物的空间位阻效应进而降低其催化活性。  相似文献   

10.
汤昆  徐俊  付丽娜  贾春辉  张付利 《化学通报》2012,(11):1036-1039
合成了2-吡啶甲醛缩苯二胺双席夫碱Zn(Ⅱ)配合物,通过元素分析和IR对配合物进行了表征。采用MTT法评价配合物体外抗肿瘤细胞增殖活性,通过光谱法和粘度测定法研究生理pH条件下Zn(Ⅱ)配合物与DNA的相互作用。结果表明,2-吡啶甲醛缩苯二胺双席夫碱Zn(Ⅱ)配合物对人白血病细胞(K-562)、人肝癌细胞(SMMC-7721)、人乳腺癌细胞(MCF-7)均有较强的体外抗肿瘤细胞增殖活性,配合物以部分插入方式与DNA结合。  相似文献   

11.
Seven-coordinate manganese(II) complexes [Mn(L)(H2O)2]2+, where L represents an equatorial pentadentate macrocyclic ligand with five nitrogen donor atoms, were studied with regard to their acid-base properties, water-exchange rate constants, and corresponding activation parameters (DeltaH, DeltaS, and DeltaV). Three of the studied complexes without imine bonds in the macrocyclic ligand are proven superoxide dismutase (SOD) mimetics. Their water-exchange parameters were compared with those of the imino groups containing complex [Mn(L1)(Cl)2] (dichloro-2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]-octadeca-1(18),2,12,14,16-pentaenemanganese(II)), which does not show SOD activity. In addition the X-ray crystal structure of a new complex, dichloro-2,6-bis[1-(2-(N-methylamino)ethylimino)ethyl]pyridine-manganese(II) [Mn(L2)(Cl)2], which is the acyclic analog of [Mn(L1)(Cl)2], is reported. Stability constants of the complexes and the pKa values of the ligands were measured by potentiometric titration. The titrations of [Mn(L1)(H2O)2]2+ and [Mn(L2)(H2O)2]2+ led to complicated species distribution curves because of their ligands containing imine bonds. Water exchange was measured by temperature- and pressure-dependent 17O NMR techniques. In addition to the measurements on [Mn(EDTA)(H2O)]2- and its derivatives, this is the only study of water exchange on seven-coordinate manganese complexes. The water exchange rate constants vary between 1.6 x 107 s-1 and 5.8 x 107 s-1 at 25 degrees C and are mainly controlled by the pi-acceptor abilities of the ligands. The exchange rate constant of the diaqua-1,4,7,10,13-pentaazacyclopentadecanemanganese(II) [Mn([15]aneN5)(H2O)2]2+ complex seems to be even higher but could not be exactly determined. On the basis of the obtained activation parameters, the exchange mechanism of the studied seven-coordinate manganese(II) complexes follows a dissociative pathway (Id mechanism). DFT calculations (UB3LYP/LANL2DZp) were performed to obtain the energy required for the dissociation of the coordinated water molecule, that is, the energy difference between the starting seven-coordinate complex and a six-coordinate intermediate. The results have been discussed in terms of the catalytic mechanism of the proven SOD mimetics.  相似文献   

12.
Zhou DF  Chen QY  Qi Y  Fu HJ  Li Z  Zhao KD  Gao J 《Inorganic chemistry》2011,50(15):6929-6937
In order to find multifunction anticancer complexes, three Mn(II) complexes of N-substituted di(2-pyridylmethyl)amine were characterized and used as agents to interfere with the functions of mitochondria and the metabolite of O(2) in cancer cells. It was found that carboxylate-bridged dimanganese(II) systems are good models of catalase and exhibit good inhibition of the proliferation of U251 and HeLa cells. The inhibiting activity of these manganese(II) complexes on the tumor cells in vitro was related to their disproportionating H(2)O(2) activity. The reaction of carboxylate-bridged dimanganese Mn(II) complex with H(2)O(2) forms a stable Mn(III)-(μ-O)(2)-Mn(IV) complex. Extensive experimental results show that chloride-bridged dimanganese(II) complexes could inhibit the swelling of calcium(II) overloaded mitochondria, and carboxylate-bridged manganese(II) complexes enhance the swelling of calcium(II) overloaded mitochondria. These results indicate that the interactions between Mn(II) complexes of N-substituted di(picolyl)amine and mitochondria are influenced by the structure and conformation of the complexes. Mn(II) complexes of N-substituted di(picolyl)amine could be developed as multifunctional anticancer complexes to interfere with the absorption of calcium(II) in mitochondria and the metabolite of O(2) through the H(2)O(2) or ROS involved signaling induced apoptosis of cancer cells.  相似文献   

13.
Mn(II) and Co(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone have been synthesized and characterized by the investigations of electronic and EPR spectra and X-ray diffraction. Based on the spectral studies, an octahedral geometry is assigned for the Mn(II) and Co(II) complexes. X-ray powder diffraction studies reveal that Mn(II) and Co(II) complexes have triclinic crystal lattices. The unit cell parameters of the Mn(II) complex are a=11.0469 ?, b=6.2096 ?, c=7.4145 ?, α=90.646°, β=95.127°, γ=104.776°, V=489.7 ?(3) and those of Co(II) complex are a=9.3236 ?, b=10.2410 ?, c=7.8326 ?, α=90.694°, β=99.694°, γ=100.476°, V=724.2 ?(3). When the free ligand and its metal complexes are subjected to antibacterial activity, the metal complexes are proved to be more active than the ligand. However with regard to in vitro antioxidant activity, the ligand exhibits greater antioxidant activity than its metal(II) complexes.  相似文献   

14.
A series of complexes with the formula [Mn(III/IV)2(mu-O)2(L)2(X)2]3+ have been prepared in situ from Mn(II)LCl2 precursors by a general preparative method (L = terpy, Cl-terpy, Br-terpy, Ph-terpy, tolyl-terpy, mesityl-terpy, t Bu3-terpy, EtO-terpy, py-phen, dpya, Me2N-terpy, or HO-terpy, and X = a labile ligand such as water, chloride, or sulfate). The parent complex, where L = terpy and X = water, is a functional model for the oxygen-evolving complex of photosystem II (Limburg, et al. J. Am. Chem. Soc. 2001, 123, 423-430). Crystals of Mn(II)(dpya)Cl2, Mn(II)(Ph-terpy)Cl2, Mn(II)(mesityl-terpy)Cl2, and an organic-soluble di-mu-oxo di-aqua dimanganese complex, [Mn(III/)(IV)2(mu-O)2(mesityl-terpy)2(OH2)2](NO3)3, were obtained and characterized by X-ray crystallography. Solutions of the in situ-formed di-mu-oxo dimanganese complexes were characterized by electrospray mass spectrometry, EPR spectroscopy, and UV-visible spectroscopy, and the rates of catalytic oxygen-evolving activity were assayed. The use of Mn(II)LCl2 precursors leads to higher product purity of the Mn dimers while achieving the 1:1 ligand to Mn stoichiometry appropriate for catalytic activity assay. These methods can be used to screen the catalytic activity of other di-mu-oxo dimanganese complexes generated by using a ligand library.  相似文献   

15.
Trivalent Cr (III) and divalent of both Mn (II) and Cu (II) complexes containing hydrazone ligands derived from the condensation of picolinohydrazide with O-vanillin were synthesised and characterized by elemental analysis, spectral and magnetic measurements. The suggested octahedral structures were confirmed by applying DFT optimization and conformational studies. The thermal decomposition behaviour of Mn (II) complex is discussed. The evaluation of kinetic parameters (Ea, A, ∆H, ∆S and ∆G) of all thermal degradation stages have been evaluated using Coats-Redfern and Horowitz-Metzger approaches. The band gap results suggested that these complexes are semi-conductors and lie in same range of highly efficient photovoltaic materials. Antibacterial studies showed that higher activity of complexes than of ligands. Assay on the antioxidant activity (DPPH and SOD) of the above complexes revealed the high SOD-activity of Mn (II) complex and high DPPH-activity for ligand.  相似文献   

16.
Thiosemicarbazone ligand, 2‐((4,9‐dimethoxy‐5‐oxo‐5H‐furo[3,2‐g]chromen‐6‐yl)methylene) hydrazinecarbothioamide and its Cd(II), Cu(II), Zn(II), Ni(II), Co(II), VO(II), and Mn(II) complexes have been prepared and characterized by various spectroscopic and analytical techniques. Complexes molar conductance measurements displayed that all complexes (2–8) are non‐electrolyte. With general composition [M(H3L)(CH3COO)2H2O].nH2O, where M = Cd(II), Cu(II), Zn(II), Ni(II), Co(II) and Mn(II) while complex (8) has [VO(H3L)(SO4)H2O].2H2O formula. Based on analytical and spectral measurements, the octahedral or distorted octahedral geometries suggested for complexes. Ligand and complexes anti‐proliferative activities were assessed against three various human tumor cell lines including breast cancer (MCF‐7), liver cancer (HepG2) and lung cancer (A549) using SRB fluorometric assay and cis‐platin as positive control. The anti‐proliferative activity result indicated that the ligand and its complexes have considerable anti‐proliferative activity analogous to that of ordinarily utilized anti‐cancer drug (cis‐platin). They do their anti‐cancer activities by modifying free radical's generation via raising the superoxide dismutase activity and depletion of intracellular reduced glutathione level, catalase, glutathione peroxidase activities, escorted by highly generation of hydrogen peroxide, nitric oxide and other free radicals leading to tumor cells death, as monitoring by decreasing the protein and nucleic acids synthesis.  相似文献   

17.
A compartment ligand 2,6-bis[5′-chloro-3′-phenyl-1H-indole-2′-carboxamidyliminomethyl]-4-methylphenol was prepared and homobinuclear phenol-bridged Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Hg(II), Fe(III), and Mn(II) complexes have been prepared by the template method using the precursors 2,6-diformyl-4-methylphenol, 5-chloro-3-phenylindole-2-carbohydrazide and metal chlorides in 1 : 2 : 2 ratio, respectively. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, NMR, FAB mass and ESR spectra, TGA, and powder XRD data. Cu(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes exhibit square pyramidal geometry whereas Ni(II), Mn(II), and Fe(III) complexes are octahedral. Low magnetic moment values for Cu(II), Ni(II), Co(II), Fe(III), and Mn(II) complexes show antiferromagnetic spin-exchange interaction between two metal centers in binuclear complexes. The ligand and its complexes were tested for antibacterial activity against Escherichia coli and Staphyloccocus aureus, and antifungal activity against Aspergillus niger and Candida albicans.  相似文献   

18.
New Pb(II), Mn(II), Hg(II), and Zn(II) complexes, derived from 4-(4-chlorophenyl)-1-(2-(phenylamino)acetyl)thiosemicarbazone, were synthesized. The compounds with general formulas, [Pb(H2L)2(OAc)2]ETOH.H2O, [Mn(H2L)(HL)]Cl, [Hg2(H2L)(OH)SO4], and [Zn(H2L)(HL)]Cl, were characterized by physicochemical and theoretical studies. X-ray diffraction studies showed a decrease in the crystalline size of compounds that were exposed to gamma irradiation (γ-irradiation). Thermal studies of the synthesized complexes showed thermal stability of the Mn(II) and Pb(II) complexes after γ-irradiation compared to those before γ–irradiation, while no changes in the Zn(II) and Hg(II) complexes were observed. The optimized geometric structures of the ligand and metal complexes are discussed regarding density functional theory calculations (DFT). The antimicrobial activities of the ligand and metal complexes against several bacterial and fungal stains were screened before and after irradiation. The Hg(II) complex has shown excellent antibacterial activity before and after γ-irradiation. In vitro cytotoxicity screening of the ligand and the Mn(II) and Zn(II) complexes before and after γ-irradiation disclosed that both the ligand and Mn(II) complex exhibited higher activity against human liver (Hep-G2) than Zn(II). Molecular docking was performed on the active site of MK-2 and showed good results.  相似文献   

19.
New expected biologically active complexes for some of the first (Mn (II), Ni (II), Cu (II) and Zn (II)) and second (Rh (III) and Cd (II)) transitional metals rows with N-(2-Aminoethyl)-1,3-propanediamine as a ligand (AEPD)have been synthesized. All synthesized complexes were formed with 1:1 (metal: AEPD) stoichiometry except Ni (II) 1:2 (Ni: AEPD). The compounds were characterized by different analysis tools such as; elemental analysis, Fourier transform infrared (FTIR), 1H-NMR, mass spectra, thermal analysis, electronic spectra, magnetic measurement and molar conductance techniques. AEPD ligand interacted with all metal ions as tridentate ligand by using the nitrogen atoms. On the other hand, density functional theory (DFT) calculations have been performed to confirm the optimized geometrical structures for both AEPD and its complexes. Furthermore, coordination compounds were screened for their potential antibacterial activities against six pathogenic bacteria as well as one kind of fungi in comparison to standard antibiotics by agar well diffusion method. The results show that most of the complexes exhibit antibacterial and antifungal activities against these organisms. Rh (III)-AEPD complex exhibited the strongest antibacterial effect followed by the Cd (II) complex but as antifungal agents Cd (II) was the first and the second was Rh (III). Also, the anticancer activity was screened for these metal complexes against growth of human liver cancer HEPG2 tumor cell line and this inhibition activity of Cd (II) chelate was noticed to be more active with lowest IC50 than that of all other synthesized complexes. Unfortunately, Mn (II) and Rh (III) chelates lacked anticancer activity. The docking active sites interactions were evaluated using the selected protein for anticancer activity. Finally, antioxidant activity was studied. Mn (AEPD) showed maximum activity followed by complex of Rh (III).  相似文献   

20.
In the current work, two triazine‐based multidentate ligands (H2L1 and H2L2) and their homo‐dinuclear Mn (II), mononuclear Ln (III) and hetero‐dinuclear Mn (II)/Ln (III) (Where Ln: Eu or La) complexes were synthesized and characterized by spectroscopic and analytical methods. Single crystals of a homo‐dinuclear Mn (II) complex {[Mn (HL1)(CH3OH)](ClO4·CH3OH}2 ( 1 ) were obtained and the molecular structure was determined by X‐ray diffraction method. In the structure of the complex, each Mn (II) ion is seven‐coordinate and one of the phenolic oxygen bridges two Mn (II) centre forming a dimeric structure. The UV–Vis. and photoluminescence properties of synthesized ligands and their metal complexes were investigated in DMF solution and the compounds showed emission bands in the UV–Vis. region. The catecholase enzyme‐like activity of the complexes were studied for 3,5‐DTBC → 3,5‐DTBQ conversion in the presence of air oxygen. Homo‐dinuclear Mn (II) complexes ( 1 and 4 ) were found to efficiently catalyse 3,5‐DTBC → 3,5‐DTBQ conversion with the turnover numbers of 37.25 and 35.78 h?1 (kcat), respectively. Mononuclear Eu (III) and La (III) complexes did not show catecholase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号