首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed investigation was made of the flow of compressible gas-liquid mixtures through sudden enlargements in diameter of circular pipes. One-dimensional analysis shows that the dimensionless pressure rise varies with mixture void fraction and mixture momentum, while the establishment of choking conditions at the enlargement is controlled by the length of pipe downstream in which frictional pipe flow occurs. The flows were found to exhibit two characteristic modes, jet flow and submerged flow, with intermediate flows displaying unsteady oscillation between these modes. The distance to the downstream position of maximum pressure increased steadily with mixture void fraction when the upstream pipe outlet was choked, varying from 5 to 50 times the downstream pipe diameter. If the flow was not choked, this distance was much smaller and showed discrete fixed values associated with the mode of flow.

One-dimensional analysis accurately predicted maximum pressure, but when flow was choked at the enlargement the calculation was sensitive to the pressure in the region of separated flow surrounding the central jet in the enlargement. Although analysis of maximum pressure in terms of flow expansion and normal shock gave a general indication of the maximum pressure (which was thus concluded to depend on the general flow processes expected in the enlargement), accurate prediction of maximum pressures will depend on empirical knowledge of the separated flow region pressures. The maximum pressure rise was found to be in the range extending down to 0.3 of the upstream pipe outlet pressure and reduced with void fraction; it was also influenced by the enlargement area ratio. Flows in the approach and outlet pipes were found to be compressible, frictional pipe flows of the Fanno type, with somewhat reduced friction factors occurring in the outlet pipe.  相似文献   


2.
3.
孙茂  刘晶昌  吴礼义 《力学学报》1992,24(3):259-264
本文提出一种分区Lagrangian涡方法:将附着流动和分离流动分开处理,在附着区解边界层方层,只在分离区用涡方法解N-S方程。由于将尺度不同的区域分开了,求解分离区流动的涡方法中,每一时间步上物面引出的涡数在较小程度上依赖于Re数。这样,求解高Re数流动时,流场内的涡数,因而计算机内存和时间得以大大减小。用该方法计算了瞬时起动圆柱的初期流动,与实验结果比较相符很好。  相似文献   

4.
Usually, foam in a porous medium flows through a small and spatially varying fraction of available pores, while the bulk of it remains trapped. The trapped foam is under a pressure gradient corresponding to the pressure gradient imposed by the flowing foam and continuous wetting liquid. The imposed pressure gradient and coalescence of the stationary foam lamellae periodically open flow channels in the trapped foam region. Foam lamellae in each of these channels flow briefly, but channels are eventually plugged by smaller bubbles entering into the trapped region. The result is a cycling of flow channels that open and close throughout the trapped foam, leading to intermittent pulsing of foam flow in that region.The dynamic behavior of foam trapped in porous media is modeled here with a pore network simulator. We predict the magnitude of the pressure drop leading to the onset of flow of foam lamellae in the region containing trapped foam. This mobilization pressure drop depends only on the number of lamellae in the flow path and on the geometry of the pores that make up this path.The principles learned in this study allow us to predict the fraction of foam that is trapped in a porous medium under given flow conditions. We present here the first analytic expression for the trapped foam fraction as a function of the pressure gradient, and of the mean and standard deviation of the pore size distribution. This expression provides a missing piece for the continuum foam flow models based on the moments of the volume-averaged population balance of foam bubbles.  相似文献   

5.
本文报告了楔形钝体分离流区域的湍流实验,提供了分离区内的时均速度、压力,湍流度和雷诺应力的分布,并对分离区的湍流特征进行了分析。实验表明,分离区内时均速度具有很大的横向梯度。湍流度和雷诺应力的分布曲线很相纵,它们在回流区变化较为平缓,而在混合区,当它们达到极大值之后,便以指数形式向(?)衰减。压力在回流区内变化也不大,但在混合区却具有明显的横向梯度。  相似文献   

6.
Two Stokes flows which are known to lead to separation are reconsidered from a more dynamic perspective, and it is found that within the region of separated flow there is an extremum for the pressure. A simple argument is presented which indicates that this is true under reasonable conditions.  相似文献   

7.
 Laboratory measurements were made of wall pressure fluctuations in separated and reattaching flows over a backward-facing step. An array of 32 microphones in the streamwise as well as the spanwise directions was utilized. The statistical properties of pressure fluctations were scrutinized. Emphasis was placed on the flow inhomogeneity in the streamwise direction. One-point statistics such as the streamwise distribution of rms pressure and autospectra were shown to be generally consistent with the prior results. The peak frequency and the fall-off rate of autospectra demonstrated the shear layer-originated nature of pressure fluctuations. The coherences and wavenumber spectra in the streamwise and spanwise directions were indicative of the presence of dual modes in pressure; one is associated with the large-scale vortical structure in the low-frequency region and the other is the boundary-layer-like decaying mode in the high-frequency region. Received: 18 August 1999/Accepted: 17 May 2000  相似文献   

8.
Turbulent separation limits the performance in many engineering applications, for example creating pressure losses in diffuser like flows or stall on aircraft wings. In the present study the turbulent boundary layer flow over a flat plate separating due to an adverse pressure gradient is studied as a model problem and the effect of periodic excitation in both time and space is investigated through direct numerical simulations. Linear stability analysis is used to analyse the sensitivity of the flow with respect to time-periodic excitations. The dependence on position, amplitude and frequency of the forcing is investigated. For a certain frequency range at sufficiently high amplitudes, it is possible to eliminate the separated region. Furthermore, three-dimensional effects are studied by applying a steady spanwise forcing as well as a both time-dependent and spanwise varying forcing. A forcing varying in spanwise direction is shown to be the most effective in eliminating the separated region, whereas two-dimensional time-periodic excitation was not as efficient as it was expected.  相似文献   

9.
This paper presents hybrid Reynolds-averaged Navier–Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid methods studied in this work include the detached eddy simulation (DES) based on Spalart–Allmaras (S–A), Menter’s k–ω shear-stress-transport (SST) and k–ω with weakly nonlinear eddy viscosity formulation (Wilcox–Durbin+, WD+) models and the zonal-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower–upper symmetric-Gauss–Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows. The project supported by the National Natural Science Foundation of China (10502030 and 90505005).  相似文献   

10.
 Time-dependent characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step were investigated by means of the continuous wavelet transform. Emphasis was placed on the combination of time-localized analyses of the wavelet transform and multi-point measurements of pressure fluctuations. Synchronized wavelet maps revealed the evolutionary behavior of pressure fluctuations and gave further insight into the modulated nature of large-scale vortical structures. It was found that there exist two modes of shed vortices: one is the global oscillation and the other is the vortex convection. The two alternating modes are synchronized with the flapping frequency component of pressure fluctuations. The flapping motion gives rise to the difference in pressure spectra, indicating more intensive pressure activity during the shrinking period of the recirculation region.  相似文献   

11.
Summary The secondary flow due to the growth of the streamwise vortices near the side walls serves to diminish the spanwise uniformity of the time-mean flow properties. In the region adjacent to the side walls, momentum mixing is enhanced due to the existence of the secondary flow and the separated shear layer spreads faster. There is a corresponding increase in the non-coherent turbulence in this region near the side walls. The increased spreading rates and overall turbulence in the shear layer, in turn, tend to suppress the rolling-up of the separated shear layer into organized structures. This effect is rapidly carried into the core two-dimensional flow region as the streamwise vortex grows under the influence of the adverse pressure gradient. The surface visualizations provide further evidence of the existence of secondary flows near the side walls.  相似文献   

12.
The Elliptic Blending Reynolds Stress Model (EB-RSM), originally proposed by Manceau and Hanjalić (2002) to extend standard, weakly inhomogeneous Reynolds stress models to the near-wall region, has been subject to various modifications by several authors during the last decade, mainly for numerical robustness reasons. The present work revisits all these modifications from the theoretical standpoint and investigates in detail their influence on the reproduction of the physical mechanisms at the origin of the influence of the wall on turbulence. The analysis exploits recent DNS databases for high-Reynolds number channel flows, spanwise rotating channel flows with strong rotation rates, up to complete laminarization, and the separated flow after a sudden expansion without and with system rotation. Theoretical arguments and comparison with DNS results lead to the selection of a recommended formulation for the EB-RSM model. This formulation shows satisfactory predictions for the configurations described above, in particular as regards the modification of the mean flow and turbulent anisotropy on the anticyclonic or pressure side.  相似文献   

13.
An active grid for turbulence generation of several rotatable axes with surmounted vanes that can be driven via stepper or servo motors is presented. We investigate the impact of different excitation protocols for the grid. Using such protocols that already have the intermittent structure of turbulence, higher intermittent flows can be achieved. This concept can also be used to generate turbulent flows of high turbulence intensities (>25%) exhibiting integral length scales beyond the typical size of the test section of the wind tunnel. Similar two-point correlations measured by the intermittent statistics of velocity increments that are characteristic for flows of high Reynolds number, i.e. in the atmospheric boundary layer, can be reproduced.  相似文献   

14.
The transition and separation processes of the boundary layer developing on a flat plate under a prescribed adverse pressure gradient typical of Ultra-High-Lift low-pressure turbine profiles have been investigated, with and without the application of a synthetic jet (zero net mass flow rate jet). A mechanical piston has been adopted to produce an intermittent flow with zero net mass flow rate. The capability of the device to suppress or reduce the large laminar separation bubble occurring under steady inflow condition at low Reynolds numbers has been experimentally investigated by means of hot-wire measurements. Wall static pressure measurements complement the hot-wire time-resolved velocity results. The paper reports the investigations performed for both steady and controlled conditions. The active device is able to control the laminar separation bubble induced at low Reynolds number conditions by the strong adverse pressure gradient. An overall view of the time-dependent evolution of the controlled boundary layer is provided by the phase-locked ensemble averaging technique, triggered at the synthetic jet frequency. The separated flow transition process, which is detected for the uncontrolled condition, is modified by the synthetic jet in different ways during the blowing and suction phases. Overall, the phase-locked velocity distributions show a reduced separated flow region for the whole jet cycle as compared to the uncontrolled condition. The phase-locked distributions of the random unsteadiness allow the identification of vortical structures growing along the shear layer mainly during the blowing phase.  相似文献   

15.
An exact solution for laminar two-phase eccentric core-annular flows (CAF) in inclined pipes is derived. This solution complements the exact solutions that were obtained for inclined stratified flows with curved interfaces as to provide a set of solutions for two-phase laminar separated flows. A unified set of three dimensionless parameters for separated flows is defined and used to explore the effects of the system parameters and separated flow configurations on the velocity profiles and the resulting holdup, pressure gradient and pumping power requirement in horizontal and inclined concurrent and countercurrent flows. It is shown that similarly to stratified flows, also in CAF multiple solutions for the holdup and the associated flow characteristics can be obtained in inclined flows. The boundaries of the multiple solution regions are mapped and the effect of the core eccentricity and system parameters boundaries are demonstrated and discussed.The benefits of adding a lubricating phase for transportation of a viscous fluid in inclined CAFs is investigated. An adverse effect of the upward pipe inclination on the power savings in all of the separate flow configurations is demonstrated. Independently of the density of the lubricant, namely, whether it is lighter or heavier than the viscous fluid, the effect of hydrostatic pressure gradient always hinders the possibility of reducing the pumping requirement for transporting the viscous phase. However, surprisingly, a heavier lubricant is preferable form the view point of power saving. The implications of turbulent flow of the lubricating phase and the susceptibility to Ledinegg instability on the potential power savings are also considered and discussed. The application of the model for the analysis of experimental data of the holdup and pressure drop obtained in horizontal and inclined CAF is also demonstrated.  相似文献   

16.
Modifications of the turbulent separated flow in an asymmetric three-dimensional diffuser due to inlet condition perturbations were investigated using conventional static pressure measurements and velocity data acquired using magnetic resonance velocimetry (MRV). Previous experiments and simulations revealed a strong sensitivity of the diffuser performance to weak secondary flows in the inlet. The present, more detailed experiments were conducted to obtain a better understanding of this sensitivity. Pressure data were acquired in an airflow apparatus at an inlet Reynolds number of 10,000. The diffuser pressure recovery was strongly affected by a pair of longitudinal vortices injected along one wall of the inlet channel using either dielectric barrier discharge plasma actuators or conventional half-delta wing vortex generators. MRV measurements were obtained in a water flow apparatus at matched Reynolds number for two different cases with passive vortex generators. The first case had a pair of counter-rotating longitudinal vortices embedded in the boundary layer near the center of the expanding wall of the diffuser such that the flow on the outsides of the vortices was directed toward the wall. The MRV data showed that the three-dimensional separation bubble initially grew much slower causing a rapid early reduction in the core flow velocity and a consequent reduction of total pressure losses due to turbulent mixing. This produced a 13% increase in the overall pressure recovery. For the second case, the vortices rotated in the opposite sense, and the image vortices pushed them into the corners. This led to a very rapid initial growth of the separation bubble and formation of strong swirl at the diffuser exit. These changes resulted in a 17% reduction in the overall pressure recovery for this case. The results emphasize the extreme sensitivity of 3D separated flows to weak perturbations.  相似文献   

17.
Stably density-stratified and nonstratified flows in a channel past a pair of symmetrical closed-streamline vortices on the channel axis are considered. The numerical results obtained cover the whole range of subcritical stratification and eddy lengths. An asymptotic solution for a very long closed-streamline region is found. The results can be used directly in the asymptotic theory of separated flows at high Reynolds number. Sadovskii flows are plane potential inviscid flows past a pair of closed-streamline regions of uniform vorticity. The flow velocity may be discontinuous at the boundary of the closed-streamline region. The analysis below is restricted to the specific case of continuous velocity distribution, so that the Bernoulli constant jump at the eddy boundary is zero. Unbounded nonstratified flows of this kind were studied in [1, 2]. Calculations of the corresponding channel flow were restricted to relatively wide channels. Closely related problems were also considered in [3, 4].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 118–123, May–June, 1993.  相似文献   

18.
A finite volume computational scheme to solve the Navier-Stokes equations for the laminar flow fields of partially enclosed axial and radial jets impinging on a flat plate has been devised and tested. This scheme is based on the SIMPLEC technique. However, because of the backflow at the ‘outflow’ boundary, the SIMPLEC pressure correction technique has to be modified. The need for this modification, necessitated by the convergence failure, showed the ‘hidden’ pressure boundary condition of SIMPLE-type techniques. Test computations with the present scheme for flows in a channel with a built-in cylinder show that the location of the exit boundary affects very slightly the separated flow behind the cylinder. Computed Squire jet flows compare quite well with the available analytical solution. Finally, impinging radial jets have been computed for different Reynolds numbers. The results show the critical Reynolds number below which a steady solution is obtained and above which periodic and eventually chaotic flows result.  相似文献   

19.
Structure of instantaneous flow reversals has been measured in a highly turbulent axisymmetric diffuser flow using pulsed-wire anemometry. In this 8° nominal included angle conical diffuser, the adverse pressure gradient (APG) is strong enough to cause appreciable instantaneous flow reversals (instantaneous backflow up to 30% of the time), but the time-averaged flow is non-separated. The results are compared with the other severe APG separating flows reported in literature. An increase in entry Reynolds number indicated a decrease in the size of near-wall instantaneous reversals region as well as a decrease in the magnitude of instantaneous backflow. Also, the region of instantaneous reversals moves slightly downstream at appreciably higher Reynolds numbers. The initiation and growth of instantaneous reversals in a conical diffuser was found to strongly influence the wall-layer and the central region. Present results also suggest that the instantaneous backflow should be considered for modelling of instantaneously-separating diffuser flows. In the final stages of a conical diffuser, the magnitudes of cross-stream pressure gradient were found to be appreciably larger than that of the longitudinal pressure gradient, indicating that accurate representation of a conical diffuser flow can not be achieved without considering V-momentum equation. A comparison of various separating flows revealed remarkable similarity of instantaneous reversals regions and distributions even in different flow configurations.  相似文献   

20.
This work examines the behavior of the interface friction factor or drag coefficient as a means for extending the modeling of separated two-phase flows through the separate consideration of each phase. The model development of this work builds primarily upon the work of Carofano & McManus (1969), Wallis (1970) and Smith (1968). A one-dimensional flow model was developed for the case of vertical upward annular fiow of an air-water mixture with droplet entrainment. The model was developed for the investigation of accelerating flows in a nozzle but is utilized in this study for the investigation of momentum transport occurring in non-accelerating flows. This study presents experimental data showing the behaviour of the flow pressure drop occurring at various flow qualities and gas velocities. Also presented are empirical results for values of the air-water interface drag coefficient as a function of flow quality and gas core Reynolds number. The drag coefficient variation is compared to a previous correlation developed by Wallis 1969).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号