首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Lysophospholipids are known to play a role in a wide range of cellular processes involving membrane–protein or membrane–membrane interactions; however lysolipids–lamellar lipids interactions remain unclear. The effects of lysolipids on membrane order and dynamics were examined using optical birefringence and fluorescence techniques. We found that lysophosphatidic acid (LPA) induces a considerable disorder in chain orientation for synthetic lipid of dimyristoyl-phosphatidylcholines (DMPC), whereas a slight order for natural lipid of egg yolk phosphatidylcholine (Egg-PC), e.g. the chain order decreases by 10% at 0.1 mole ratio for DMPC in comparison with the membranes without LPA and increases by 3.4% at 0.09 mole ratio for Egg-PC. Also, membrane fluidity corresponds with the change in the chain disorder, namely, the fluidity increases for DMPC membranes, while decreases for Egg-PC membranes by addition of LPA. The difference in the effects of LPA is interpreted by a difference in the chain packing between the synthetic and the natural lipid bilayers. LPA can be incorporated into natural lipid membranes without disturbance, and readjusts itself to a more favorable hydrophobic match with the bilayers. Lysophophatidylcholine (LPC) also induces a disorder in DMPC membranes, but the decrease in chain order is only half compared with that for LPA.  相似文献   

2.
In the present paper, we apply the dynamic laser light scattering technique to investigate the dependence of the characteristic times of thermally induced shape fluctuation of large unilamellar vesicles (LUVs) on bilayer composition. After addressing single-component LUVs made of two common phospholipids, dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC), we investigate the changes in vesicle shape fluctuation times due to the presence of cholesterol and gangliosides (GM1), added in small amounts. The experimental results show that the addition of a second component, even in small amount, to DMPC vesicles induces a change in membrane fluctuation times. Moreover, in the case of ganglioside addition, also the disposition of GM1 within the bilayer is of importance. Quite unexpectedly, the symmetric or asymmetric disposition of GM1 has opposite effects on bilayer dynamics, the first resulting in a "hardening" and the second in a "softening" of the membrane. Those results support that the small-scale structure of the bilayer is important in determining the overall dynamics of the vesicle. They also suggest that the physiological disposition of GM1 in the outer leaflet of real cells has a significative result in mechanical terms, positively affecting the dynamics of the membrane.  相似文献   

3.
Giant vesicles generated from synthetic and natural lipids such as phosphatidylcholines are useful models for understanding mechanical properties of cell membranes. Line tension is the one-dimensional force enabling the closing of transient pores on cell membranes. Transient pores were repeatedly and reproducibly formed on the membrane edge of giant vesicles generated from synthetic and natural phosphatidylcholines employing a nitrogen-pumped coumarin dye laser (440 nm). Line tension was determined at room temperature from closing of these pores that occurred over several seconds when the radius of the vesicle could be considered to be constant. The value of line tension depends on the nature of the lipid for single lipid systems, which, at room temperature, yielded a vesicle bilayer region in the gel, fluid, or mixed gel and fluid phases. The line tension for vesicles generated from phosphatidylcholines with saturated acyl chains of lengths of 12-18 carbon atoms ranges from 1 to 12 pN, exhibiting an increase with chain length. Vesicles generated from the natural Egg-PC, which is a mixture of lipids, are devoid of phase transition and exhibited the largest value of line tension (32 pN). This value is much larger than that estimated from the line tensions of vesicles obtained from lipids with homologous acyl chains. This study, to our knowledge, is the first to employ laser ablation to generate transient pores and determine line tension from the rate of pore closure and demonstrate a relationship between line tension and acyl chain length.  相似文献   

4.
A series of artificial cyclic lipids that mimic archaeal membrane ones has been synthesized. The structural features of these molecules include a longer cyclic framework, in which the alkyl chain length ranges from 24 to 32 in carbon number, which is longer than our first analogous molecule with 20-carbon long alkyl chains [K. Miyawaki, T. Takagi, M. Shibakami, Synlett 8 (2002) 1326]. Microscopic observation reveals that these molecules have a self-assembling ability: hydration of the lipids yields multilamellar vesicles in aqueous solution and monolayer sheets on solid supports. High-sensitivity differential scanning calorimetry (24- and 28-carbon alkyl chain lipids) indicates that (i) the alkyl chain length affects their phase behavior and (ii) the enthalpies of endothermic peaks accompanied by phase transition were considerably lower than those of their monomeric phospholipid analogs. Fluorescence polarization measurements suggest that the membranes made from the 24-carbon alkyl chain lipid have a higher polarization factor than membranes composed of DMPC and DMPC plus cholesterol. These findings imply that the cyclic lipids containing 24- and 28-carbon alkyl chain construct well-organized monolayer membranes and, in particular, that the molecular order of the 24-carbon alkyl chain lipid is higher than that of bilayer membranes in the liquid-ordered phase.  相似文献   

5.
Here, we exploit the non-invasive techniques of solid-state NMR (nuclear magnetic resonance) and differential scanning calorimetry (DSC) to study the effect of free iso and ante-iso branched chain fatty acids (BCFAs) on the physicochemical properties of lipid membranes. Free fatty acids are present in biological membranes at low abundance, but can influence the cellular function by modulating the membrane organization. Solid state NMR spectra of dimyristoylphosphatidylcholine (DMPC) lipid membranes containing either free 12-methyltetradecanoic acid (a15:0) or free 13-methyltetradecanoic acid (i15:0), show significant differences in their impact on the lipid bilayer. Chain order profiles obtained by deuterium NMR on fully deuterated DMPC-d(67) bilayers revealed an ordering effect induced by both fatty acids on the hydrophobic membrane core. This behavior was also visible in the corresponding DSC thermograms where the main phase transition of DMPC bilayers-indicative of the hydrophobic membrane region-was shifted to higher temperatures, with the iso isomer triggering more pronounced changes as compared to the ante-iso isomer. This is probably due to a higher packing density in the core of the lipid bilayer, which causes reduced diffusion across membranes. By utilizing the naturally occurring spin reporters nitrogen-14 and phosphorus-31 present in the hydrophilic DMPC headgroup region, even fatty acid induced changes at the membrane interface could be detected, an observation reflecting changes in the lipid headgroup dynamics.  相似文献   

6.
The analysis of organic pollutants in drinking water is a topic of wide interest, reflecting on public health and life quality. Many different methodologies have been developed and are currently employed in this context, but they often require a time-consuming sample pre-treatment. This step affects the recovery of the highly volatile compounds. Trace analysis of volatile organic pollutants in water can be performed 'on-line' by membrane inlet mass spectrometry (MIMS). In MIMS, the sample is separated from the vacuum of the mass spectrometer by a thin polymeric hollow-fibre membrane. Gases and organic volatile compounds diffuse and concentrate from the sample into the hollow-fibre membrane, and from there into the mass spectrometer. The main advantages of the technique are that no pre-treatment of samples before analysis is needed and that it has fast response times and on-line monitoring capabilities. This paper reports the set-up of the analytical conditions for the analysis of volatile organohalogen compounds (chloroform, bromoform, bromodichloromethane, chlorodibromomethane, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride). Linearity of response, repeatability, detection limits, and spectra quality are evaluated.  相似文献   

7.
Physicochemical properties of PEG-grafted liposomes   总被引:3,自引:0,他引:3  
Egg phosphatidylcholine (EggPC) or dimyristoylphosphatidylcholine (DMPC) liposomes containing polyethylene glycol (PEG)-lipids covering a range of 0-30 mol% have been prepared by Extrusion method. The physicochemical properties including size evolution and calcein permeation were evaluated to investigate the effect of PEG-lipids on bilayer structure. The results from quasielasetic light scattering (QELS), freeze-fracture microscopy, and gel exclusion chromatography revealed that presence of low concentration of PEG-lipid results in decreasing of vesicle size and further increase in the PEG-lipid concentrations lead to a transition from the lamellar membranes to micelles. The permeability for calcein increased with increase in concentration of distearoylphosphatidylethanolamine (DSPE)-PEG. On the other hand, the permeability decreased with low amount of cholesterol-PEG (blow 20% cholesterol-PEG) and increased with high amount of it. The maximum concentration of PEG-lipid that may be incorporated without alteration of the liposome structure depends on the composition of the bilayer. The concentration of DSPE-PEG2000 incorporated into vesicles without damaging vesicle structures were <20 mol% for EggPC and <10% for DMPC.  相似文献   

8.
A combination of the Langmuir-Blodgett and Langmuir-Schaefer techniques has been used to build a 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayer at a Au(111) electrode surface with hydrogen-substituted acyl chains in the top leaflet (solution side) and deuterium-substituted acyl chains in the bottom leaflet (gold side). Polarization modulation infrared reflection-absorption spectroscopy was used to determine changes in the conformation and orientation of the acyl chains of DMPC caused by the incorporation of two selected perfluorinated compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), into the top leaflet of the bilayer. The incorporation of perfluorinated compounds into the DMPC bilayer caused a broadening of the methylene peaks and a shift in the methylene band positions toward higher frequencies. In addition, the tilt angle of the acyl chains decreased in comparison to the tilt angle of a pure DMPC bilayer. The reported tilt angles were smaller upon insertion of PFOS ( approximately 24 degrees ) than in the presence of PFOA ( approximately 30 degrees ). Overall, the results show that the incorporation of the perfluorinated acids has an effect on the bilayer similar to that of cholesterol by increasing the membrane fluidity and thickness due to a decrease in the tilt angle of the acyl chains.  相似文献   

9.
The effect of perfluorooctanesulphonic acid (PFOS) on lipid membranes was studied using supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer as the model membrane. Phospholipid bilayer was deposited on gold electrode using a combination of the Langmuir–Blodgett and Langmuir–Schaefer (LB/LS) techniques. Electrodes were modified with two different types of membranes: DMPC bilayers initially containing PFOS and pure DMPC bilayers later exposed to the PFOS solutions. Such approach allowed studying both the changes in membrane characteristic imposed by the perfluorinated compound present in the model membrane and the process of its incorporation into the membrane. Studies with anticancer drug doxorubicin revealed that PFOS inhibits drug transport through the phospholipid bilayer and its effect can be compared to that of cholesterol. Moreover, the different trends observed in the changes in electron transfer rate constant (ks) calculated for ferricyanides and in peak current of hexaamineruthenium chloride showed that electrostatic interactions between electroactive probes and PFOS molecules incorporating into phospholipid bilayers play an important role and should be taken into account while explaining the interactions of perfluorooctanesulphonic acid with model biological membranes.  相似文献   

10.
In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.  相似文献   

11.
挥发性有机物的气相光解及光催化降解研究   总被引:11,自引:0,他引:11  
左国民  徐敏等 《分子催化》2001,15(6):463-466
研究了三氯乙烯、丙酮、苯、甲苯、二氯甲烷、三氯甲烷、四氯化碳的气相光解及光催化反应,对反应过程中反应物及CO2的浓度进行了定量监测。结果表明,在253.7nm的紫外灯光照射下,三氯乙烯可迅速被光解,反应产生CO2;甲苯和丙酮蒸气也可以被光解,但不产生CO2;在空气介质中,除CCl4外,其它几种有机物均可被光催化降解。  相似文献   

12.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. According to a well-documented hypothesis, molecules of AmB form ionic membrane channels that are responsible for chemotherapeutic action. These channels disturb the barrier function of the cell membrane which, in consequence, leads to cell death. The presence of sterols in the cell membrane is necessary for full manifestation of the antibiotic's ionophoric activity, at least in vivo. Ergosterol-containing fungal membranes are targeted more efficiently by AmB than mammalian membranes containing cholesterol. However, a similar level of disturbance of fungal and mammalian membranes is responsible for serious toxicity of the antibiotic. Due to the importance of AmB and lack of better antifungal alternatives, the search for new less toxic derivatives of this antibiotic still continues. Therefore, studies of the AmB-membrane interaction are very important. The present work constitutes a continuation of a broad program of study on AmB mode of action in our group. In particular, molecular dynamics simulations of AmB monomers inside the bilayers of three different compositions (pure dimiristoylphosphatidylcholine (DMPC) and DMPC bilayer containing approximately 25 mol % of cholesterol or ergosterol) were carried out. In general, analysis of generated trajectories resulted in identifying many significant differences in the behavior of AmB monomers depending on the membrane environment. In particular, it was established that the antibiotic increases the internal order of DMPC bilayer containing 25 mol % of cholesterol, while it has no effect on the order of the bilayer with the same amount of ergosterol. Performed calculations also revealed that relatively rigid and elongated AmB molecules exhibit higher affinity toward the sterol-containing lo phases and, therefore, may be cumulated in ordered membrane domains (e.g., lipid rafts). Since the partition coefficient between the ld and lo phase appears to be greater in the case of the ergosterol- compared to cholesterol-containing membrane, this effect can be also discussed as the possible origin of AmB-selective toxicity and indirect sterol involvement in expression of AmB activity.  相似文献   

13.
Classical molecular dynamics simulations of atomistic models of combustion-generated carbon nanoparticles and lipid bilayers have been performed to explore their possible structural, dynamical, and thermodynamic effects on biological membranes. The DREIDING generic force field is used for the carbonaceous nanoparticles of different morphologies, as produced from combustion sources, and the united atom model was employed for the dimyristoylphosphatidylcholine (DMPC) bilayer. It is observed that particle shape and structure have significant effects on solvation, mobility, adsorption, and permeation behavior of the particles. While combustion-generated carbon nanoparticles with an aspect ratio close to unity prefer to stay near the membrane center, precursors with other shapes mostly reside within the hydrocarbon tail region of the membrane. Carbon nanoparticles are not trapped in a local region even inside the membranes but move freely with a speed depending on their molecular weight. The adsorption of the particles on the surface of the biological membrane is comparable to thermal fluctuations because the weak segregation effect by water molecules is the main driving force to the adsorption behavior. The bigger the precursors are, the stronger they are bound to the membrane surface. The presence of combustion-generated nanoparticles inside the membrane perturbs local lipid density by pushing the neighboring lipid molecules away from the nanoparticles. This, coupled with thermal fluctuations, can induce an instantaneous membrane pore to allow water protrusion. From the umbrella sampling method, the potential of mean force for the permeation of carbona nanoparticles into the bilayer was also obtained. Surprisingly, elongated particles have a free energy barrier an order of magnitude smaller compared with more round ones. In addition, the round carbon nanoparticles showed strong hysteresis due to the local trapping of water molecules. Although the carbon soot precursors studied in this work are not the well-known carbon nanoparticles such as fullerenes or carbon nanotubes, the qualitative features of this study may be applicable to them as well.  相似文献   

14.
PEG-12-acyloxystearates constitute a novel class of pharmaceutical solubilizers and are synthesized from polyethylene glycol and 12-hydroxystearic acid, which has been esterified with a second acyl chain. The hemolytic activity of these surfactants decreases drastically with increasing pendant acyloxy chain length, and surfactants with an acyloxy chain of 14 carbon atoms or more are essentially nonhemolytic. In this paper, the interactions of PEG-12-acyloxystearates (acyloxy chain lengths ranging from 8 to 16 carbon atoms) with phosphatidylcholine vesicles, used as a model system for erythrocyte membranes, were studied in search of an explanation for the large variations in hemolytic activity. Surfactant-induced alterations of membrane permeability were investigated by studying the leakage of vesicle-entrapped calcein. It was found that all of the surfactants within the series interact with the vesicle membranes and cause slow leakage at elevated surfactant concentrations, but with large variations in leakage kinetics. The initial leakage rate decreases rapidly with increasing pendant acyloxy chain length. After prolonged incubation, on the other hand, the leakage is not a simple function of acyloxy chain length. The effect of the surfactants on membrane integrity was also investigated by turbidity measurements and cryo-transmission electron microscopy. At a surfactant/lipid molar ratio of 0.4, the vesicle membranes are saturated with surfactant. When the surfactant/lipid molar ratio is further increased, the vesicle membranes are progressively solubilized into mixed micelles. The rate of this process decreases strongly with increasing acyloxy chain length. When comparing the results of the different experiments, it can be concluded that there is no membrane permeabilization below saturation of the vesicle membranes. The large variations in the kinetics suggest that several steps are involved in the mechanism of leakage induced by PEG-12-acyloxystearates and that their relative rates vary with acyloxy chain length. The slow kinetics may in part be explained by the low critical micelle concentrations (CMCs) exhibited by the surfactants. The CMCs were found to be in the range of 0.003-0.025 microM.  相似文献   

15.
In the field of biomolecular simulations, dynamics of phospholipid membranes is of special interest. A number of proteins, including channels, transporters, receptors and short peptides are embedded in lipid bilayers and tightly interact with phospholipids. While the experimental measurements report on the spatial and/or temporal average membrane properties, simulation results are not restricted to the average properties. In the current study, we present a collection of methods for an efficient local membrane property calculation, comprising bilayer thickness, area per lipid, deuterium order parameters, Gaussian and mean curvature. The local membrane property calculation allows for a direct mapping of the membrane features, which subsequently can be used for further analysis and visualization of the processes of interest. The main features of the described methods are highlighted in a number of membrane systems, namely: a pure dimyristoyl-phosphatidyl-choline (DMPC) bilayer, a fusion peptide interacting with a membrane, voltage-dependent anion channel protein embedded in a DMPC bilayer, cholesterol enriched bilayer and a coarse grained simulation of a curved palmitoyl-oleoyl-phosphatidyl-choline lipid membrane. The local membrane property analysis proves to provide an intuitive and detailed view on the observables that are otherwise interpreted as averaged bilayer properties.  相似文献   

16.
The addition of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) to aqueous phospholipid membranes leads to perturbation of the bilayer. In the case of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), calorimetric and small-angle X-ray scattering analyses indicate that effects are already apparent at bound molar HFIP/lipid ratios of less than 1:150, with a pronounced decrease in the temperature of the main (gel to liquid crystalline) phase transition and a decrease in the intensity of the first- and second-order scattering reflections. As the HFIP concentration is raised further, at bound molar HFIP/lipid ratios >2:1, uniform isotropic particulate structures are formed with higher intrinsic curvature than the parent liposomes. These observations are supported by the results of thin-film experiments and are consistent with the formation of DMPC/HFIP adducts that are detergent-like in nature. In the case of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) the effects are much less marked, with no blebbing observed over a comparable range of HFIP concentrations. Although HFIP interacts strongly with DOPC membranes, it appears that membrane rupture is not promoted as readily with this lipid. Data from electron microscopy, laser correlation spectroscopy, and marker release experiments suggest that some of the immediate (nonequilibrium) effects of HFIP on membranes are the consequence of microinhomogeneity in water/HFIP mixtures. On the basis of our observations, we propose a model for the interaction of HFIP with phospholipid membranes.  相似文献   

17.
Novel carbohydrate-based phospholipids containing two saturated C(12) (dilauroyl ribo-phosphocholine) (DLRPC), C(14) (dimyristoyl ribo-phosphocholine) (DMRPC), and C(20) (diarachadonyl ribo-phosphocholine) (DARPC) carboxylic acid chains were synthesized. The physical properties of the supramolecular structures formed by these compounds were compared to those formed by their direct glycerol analogues dilauroyl phosphocholine (DLPC), dimyristoyl phosphocholine (DMPC), and diarachadonyl phosphocholine (DAPC). Modulated differential scanning calorimetry (MDSC) and X-ray diffraction data indicated that with chain lengths < or =14 carbons, the carbohydrate backbone increased the thermal stability of the bilayer below the phase-transition temperature (T(m)) as compared to the glycerol-based lipids. With longer chains (C(20)), the bilayer structure was destabilized as compared to glycerol-based lipids. NMR studies of a DMRPC vesicle dispersion reveal split choline headgroup signals and distinct magnetization transfer effects arising from the "inner" and "outer" surfaces of the bilayer vesicle. Modulated differential scanning calorimetry also demonstrated that glycerol- and carbohydrate-based lipids mix, as evidenced by a single intermediate T(m). In addition, carbohydrate-based lipid/cholesterol mixtures exhibited a decrease in enthalpy with an increase in cholesterol concentration. Unlike glycerol phospholipids, carbohydrate lipids were resistant to enzymatic degradation by phospholipase A(2) (PLA(2)).  相似文献   

18.
Effects of a short-chain phospholipid, dihexanoylphosphatidylcholine (DHPC), on the structure and morphology of membrane assemblies of a long-chain phospholipid, dimyristoylphosphatidylcholine (DMPC), were examined by fluorescence spectroscopy, differential scanning calorimetry (DSC), and cryogenic transmission electron microscopy (cryo-TEM). It was found by fluorescence measurements that DHPC affects on the gel and liquid crystalline state of DMPC vesicle membranes in different ways. Further, the result of DSC suggested that, along the transition process from DMPC vesicle to DMPC–DHPC mixed micelle, there are at least three different concentration regions which are characterized by the individual variation pattern of the transition temperature and enthalpy change. The cryo-TEM micrographs demonstrated the formation of thread-like assemblies in the second region and the coexistence of the assemblies and spherical micelles in the third region. Thus, it was concluded that the structural transition from DMPC vesicle to DMPC–DHPC mixed micelle could occur in a stepwise manner through the formation of the thread-like assembly, which cannot be described by the three-stage model of vesicle to micelle transition.  相似文献   

19.
The properties of the interatomic voids present in fully hydrated dimyristoylphosphatidylcholine (DMPC)-cholesterol mixed membranes of different compositions are analyzed in detail using a generalized variant of the Voronoi-Delaunay method on the basis of computer simulation results. The systems investigated are chosen from both sides of the DMPC-cholesterol miscibility gap; the pure DMPC bilayer has also been included in the analysis as a reference system. The results obtained show that the empty space is organized in a more compact way, forming larger voids in the presence than in the absence of cholesterol. The voids located in the region of the rigid cholesterol rings become, on average, less spherical, oriented more parallel with the membrane normal axis with increasing cholesterol concentration, whereas an opposite effect of cholesterol is observed in the middle of the membrane among the chain terminal methyl groups. In general, the preferential orientation of the voids is found to strongly correlate with that of the molecules in the hydrocarbon phase of the membranes. The membranes are found to contain rather large voids, the volume of which can be an order of magnitude larger than the largest spherical cavities present in the systems. These voids are elongated or branching channels rather than big empty holes. The voids located among the DMPC and cholesterol molecules are lying preferably parallel with the membrane normal axis. The existence of such empty channels can be of great importance in the cross-membrane permeation of small, uncharged penetrants, in particular, of polar molecules.  相似文献   

20.
Olansandan  Amagai T  Matsushita H 《Talanta》1999,50(4):851-863
A simple and reliable method was developed for analysis of 18 volatile organohalogen compounds (VOHCs) both indoors and outdoors, consisting of VOHC collection by a passive sampler, extraction with toluene by mechanical shaking, and automatic separation analysis by capillary gas-chromatography with electron capture detector (GC/ECD). The passive sampler is a porous polytetrafluoroethylene (PTFE) tube (30.30+/-0.37 mm net collection length, 5.0 mm inside diameter, 0.990 g weight) uniformly packed with activated charcoal (194.4+/-3.8 mg). The procedure was applied to a field survey on indoor and outdoor VOHC pollution in Shizuoka, Japan. Ten VOHCs, including trichloroethylene, tetrachloroethylene, chloroform, carbon tetrachloride, and p-dichlorobenzene, were detected from indoor and outdoor air samples. The ratios of maximum to minimum VOHC concentrations, both outdoors and indoors, were large. The indoor and outdoor concentrations of 1,1-dichloroethylene, dichloromethane, 1,1,1-trichloroethylene, carbon tetrachloride and trichloroethylene were found to be similar. Indoor concentrations of trihalomethanes, p-dichlorobenzene and tetrachloroethylene were higher than those of outdoors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号