首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The boron-bridged constrained geometry titanium complexes [Ti[eta5:eta1-(C5H4)B(NR2)NPh](NMe2)2][R = iPr (3), SiMe3(4)] and [Ti[eta5:eta1-(C9H6)B(NiPr2)NPh](NMe2)2](12) have been prepared in good yields by amine elimination reaction from [Ti(NMe2)4]. Subsequent deamination-chlorination with excess Me3SiCl yielded the corresponding dichloro-complexes (5, 6, 13). Reaction of the analogous ligand precursors (C5H5)B(NiPr2)N(H)R (R = Cy, tBu) with [Ti(NMe2)4] did not result in the expected bridged compounds, but rather in the half-sandwich complexes [Ti[(eta5-C5H4)B(NiPr2)N(H)R](NMe2)3][R = Cy (9), tBu (10)]. All compounds were fully characterised by means of multinuclear NMR spectroscopy. Thorough investigation of substituent effects was achieved by comparative X-ray diffraction studies on complexes 3, 5, 6 and 12.  相似文献   

2.
Seven new d10 metal coordination polymers with isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole ligands, [Zn2 L2(1,2-BDC)(H2O)]n ( 1), {[Cd2(H L)2(1,2-BDC)2] x H2O}n ( 2), [Cd(H L)(1,2-BDC)(H2O)]n (3), [Zn(H L)(1,3-BDC)(H2O) x 3H2O]n ( 4), [Cd2 L2(1,3-BDC)(H2O)]n (5), [Zn(H L)2(1,4-BDC)]n ( 6) and [Cd(H L)2(1,4-BDC)]n (7) (BDC = benzenedicarboxylate, H L = 3-(2-pyridyl)pyrazole), have been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single-crystal X-ray analyses reveal that each complex takes a different one-dimensional (1D) chain structure. In 1-7, the BDCs act as bridging ligands, exhibiting rich coordination modes to link metal ions. The three BDC isomers exhibit different coordination modes: micro(1)-eta(1):eta(1)/micro(3)-eta(2):eta(1), micro(3)-eta(1):eta(2)/micro(3)-eta(2):eta(1), micro(2)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) for 1,2-BDC, micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(0)/micro(2)-eta(2):eta(1) for 1,3-BDC, and micro(1)-eta(1):eta(0)/micro(1)-eta(0):eta(1), micro(1)-eta(1):eta(0)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(1) for 1,4-BDC, respectively. In these complexes, H acts as a simple bidentate chelate ligand (in 2, 3, 4, 6 and 7), similar to 2,2'-bipyridine, or as a tridentate chelate-bridging ligand (in 1 and 5) via deprotonation of the pyrazolyl NH group and coordination of the pyrazolyl N atom to a second metal ion. The structural differences indicate that the backbone of such dicarboxylate ligands plays an important role in governing the structures of such metal-organic coordination architectures, and the chelating bipyridyl-like ligand H leads to the formation of these coordination polymers with one-dimensional structures by occupying the coordination sites of metal ions. Moreover, the photoluminescent properties of complexes were also studied in the solid-state at room temperature.  相似文献   

3.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

4.
Treatment of 3,5-diisopropyltriazole, 3,5-diphenyltriazole, 3,5-di-3-pyridyltriazole, phenyltetrazole, pyrrolidinyltetrazole, or tert-butyltetrazole with equimolar quantities of potassium hydride and 18-crown-6 in tetrahydrofuran at ambient temperature led to slow hydrogen evolution and formation of (3,5-diisopropyl-1,2,4-triazolato)(18-crown-6)potassium (88%), (3,5-diphenyl-1,2,4-triazolato)(tetrahydrofuran)(18-crown-6)potassium (87%), (3,5-di-3-pyridyl-1,2,4-triazolato)(18-crown-6)potassium (81%), (phenyltetrazolato)(18-crown-6)potassium (94%), (pyrrolidinyltetrazolato)(18-crown-6)potassium (90%), and (tert-butyltetrazolato)(18-crown-6)potassium (94%) as colorless crystalline solids. (1,2,4-Triazolato)(18-crown-6)potassium was isolated as a hemi-hydrate in 81% yield upon treatment of 1,2,4-triazole with potassium metal in tetrahydrofuran. The X-ray crystal structures of these new complexes were determined, and the solid-state structures consist of the nitrogen heterocycles bonded to the (18-crown-6)potassium cationic fragments with eta2-bonding interactions. In addition, (3,5-diphenyl-1,2,4-triazolato)(tetrahydrofuran)(18-crown-6)potassium has one coordinated tetrahydrofuran ligand on the same face as the 3,5-diphenyl-1,2,4-triazolato ligand, while (3,5-di-3-pyridyl-1,2,4-triazolato)(18-crown-6)potassium forms a polymeric solid through coordination of the distal 3-pyridyl nitrogen atoms to the potassium ion on the face opposite the 1,2,4-triazolato ligand. The solid-state structures of the new complexes show variable asymmetry in the potassium-nitrogen distances within the eta2-interactions and also show variable bending of the heterocyclic C2N3 and CN4 cores toward the best plane of the 18-crown-6 ligand oxygen atoms. Molecular orbital and natural bond order calculations were carried out at the B3LYP/6-311G(d,p) level of theory on the model complex, (phenyltetrazolato)(18-crown-6)potassium, and demonstrate that the asymmetric potassium-nitrogen distances and bending of the CN4 core toward the 18-crown-6 ligand are due to hydrogen bond-like interactions between filled nitrogen-based orbitals and carbon-hydrogen sigma orbitals on the 18-crown-6 ligands. Calculations carried out on the model pentazolato complex (pentazolato)(18-crown-6)potassium predict a structure in which the pentazolato ligand N5 core is bent by 45 degrees toward the best plane of the 18-crown-6 oxygen atoms. Such bending is induced by the formation of intramolecular nitrogen-hydrogen-carbon hydrogen bonds. Examination of the solid-state structures of the new complexes reveals many intramolecular and intermolecular nitrogen-hydrogen distances of < or =3.0 A which support the presence of nitrogen-hydrogen-carbon hydrogen bonds.  相似文献   

5.
Group 4 metal complexes [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole, M = Ti; R = pyridine, thiazole; M = Zr) containing the tetramethylcyclopentadienyl-dialkylsilyl bridged amidinato as pendant ligand, were synthesized and characterized by elemental analysis, solution (1)H, (13)C and (15)N NMR spectroscopy and experimental (13)C and (15)N CPMAS in the solid state. The crystal structures of [Ti(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole) were determined by single crystal X-ray diffraction studies. All compounds exhibit a distorted tetrahedral geometry, with the ansa-monocyclopentadienyl-amido ligands acting in a bidentate mode. The [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, thiazole; M = Zr, Ti) complexes are ethylene polymerization catalysts in the presence of MAO and they are active precursors in regioselective catalytic hydroamination operating with an anti-Markovnikov mechanism.  相似文献   

6.
We have established cation/anion coupling reactions between the tropylium ligand in [M(eta7-C7H7)(CO)3]+ (M = Cr, W) and the reductively activated eta4-benzene ligand in [Mn(eta4-C6H6)(CO)3]- (3-) to form [M(CO)3(mu2-eta6:eta5-C7H7-C6H6)Mn(CO)3]; [Cr(CO)3(mu2-eta6:eta5-C7H7-C6H6)Mn(CO)3] can be further reduced to [Cr(CO)3(mu2-eta5:eta4-C7H7-C6H6)Mn(CO)3]2-, in which the tropylium and benzene ligands have undergone a [2 + 2] cross coupling reaction.  相似文献   

7.
A comparative synthetic, structural, and thermochemical study on a series of chelate complexes containing the fragment (eta 5-C5Me5)Ir [(eta 5-C5Me5)Ir(TsNCH2CH2NTs) (1), (eta 5-C5Me5)Ir(TsNCH2CO2) (2), (eta 5-C5Me5)Ir(CO2CO2) (3)] was performed to clarify the roles of carboxylato and sulfonamido ligands. Whereas 1 and 2 are monomeric in solution and in the solid state, 3 appears to exist as an oligomer or polymer, (3)n, which can be broken up by addition of a ligand L such as a phosphine, CO, or 2-methoxypyridine to form (eta 5-C5Me5)Ir(L)(CO2CO2) (6). The synthesis of (3)n from [(eta 5-C5Me5)IrCl(mu-Cl)]2 required the use of silver oxalate in CH3CN, but if other solvents were used, the bridging oxalato complex (eta 5-C5Me5)IrCl(mu-eta 2-eta 2-C2O4)ClIr(eta 5-C5Me5) (7) was obtained and identified by X-ray diffraction. Enthalpies for reaction of THF-soluble monomers 1 and 2 with PMe3 were determined to be -28.7(0.5) and -28.5(0.4) kcal mol-1, respectively. The oligomerization behavior of 3 may be a result of reduced sigma- or pi-donation of carboxylato ligands compared to N-tosylamido ligands, because the values for nu CO in oxalato and bissulfonamido complexes 6-CO and (eta 5-C5Me5)Ir(CO)(TsNCH2CH2NTs) (4-CO) were 2064 and 2042 cm-1, respectively.  相似文献   

8.
The ligands bis(8-quinolinyl)amine (BQAH, 1), (2-pyridin-2-yl-ethyl)-(8-quinolinyl)amine (2-pyridin-2-yl-ethyl-QAH, 2), o-dimethylaminophenyl(8-quinolinyl)amine (o-(NMe2)Ph-QAH, 3), and 3,5-dimethylphenyl(8-quinolinyl)amine (3,5-Me2Ph-QAH, 4) have been prepared in high yield from aryl halide and amine precursors by palladium-catalyzed coupling reactions. Deprotonation of 1 with nBuLi in toluene affords the lithium amide complex [Li][BQA] (5), whose dimeric solid-state crystal structure is presented. Lithium amide 5 was transmetalated by TlOTf to afford the thallium(I) amido complex [Tl][BQA] (6). An X-ray structural study of 6 shows it to be a 1:1 complex of the BQA ligand and Tl. Entry into the group 10 chemistry of the parent ligand 1 was effected by both protolytic and metathetical strategies. Thus, the divalent chloride complexes (BQA)PtCl (7), (BQA)PdCl (8), and (BQA)NiCl (9) were prepared and fully characterized. An X-ray structural study for each of these three complexes shows them to be well-defined, square-planar complexes in which the auxiliary BQA ligand binds in a planar, eta(3)-fashion. For comparison, the reactivity of ligands 2-4 with (COD)PtCl2 was studied. While reaction with ligand 2 afforded an ill-defined product mixture, ligands 3 and 4 reacted with (COD)PtCl2 to generate the unusual alkyl complexes (o-(NMe2)Ph-QA)Pt(1,2-eta(2)-6-sigma-cycloocta-1,4-dienyl) (10) and (3,5-Me2Ph-QA)Pt(1,2-eta(2)-6-sigma-cycloocta-1,4-dienyl) (11), both of which have been structurally characterized.  相似文献   

9.
The bridging phosphinidene complexes [Mn2(CO)8(micro-PNiPr2)] and [Co2(CO)4(micro-dppm)(micro-PNR2)](NR2=NiPr2, TMP) react with heterocumulenes RN3, CH2N2 and Ph2C=N=N to form complexes with micro-eta1,eta2-aminophosphaimine, micro-eta1,eta2-aminophosphaalkene and micro-eta1,eta2-aminophosphadiphenylmethylazaimine ligands, respectively.  相似文献   

10.
Two haptotropic isomers of [Pd(3)(mu(3)-DMVC)(2)(CH(3)CN)(2)][BF(4)](2) (DMVC = 1,2-di-(E)-carbomethoxyvinylcyclopentene) were structurally determined by X-ray crystallographic analyses; a monoclinic crystal contained a symmetric sandwich complex (mu(3)-eta(2):eta(2):eta(2)-coordination of DMVC ligands) and a triclinic crystal contained an unsymmetric sandwich complex (mu(3)-eta(2):eta(3):eta(1)-coordination of DMVC ligands), where the latter are connected to each other by C-HO hydrogen bonds.  相似文献   

11.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

12.
A stepwise reaction of p-tert-butylthiacalix[4]arene (TC4A-(OH)(4)) with [CpTiCl3]-NEt(3) and cis-[Mo(N(2))(2)(PMe(2)Ph)(4)] afforded a new Ti-Mo heterobimetallic complex [TC4A-(O)(4)Ti(micro2-C(5)H(5))MoH(PMe(2)Ph)(2)] which shows an unusual alpha-agostic micro2-eta5:eta2-coordination of a cyclopentadienyl ligand.  相似文献   

13.
A novel 1,2-dithiolate ligand, that is, the 2-(trifluoromethyl)acrylonitrile-1,2-dithiolate, abbreviated here as tfadt, is prepared from the corresponding cyclic dithiocarbonate. This ligand, substituted with both a CN and a CF(3) group, is compared with the well-known maleonitrile- and bis(trifluoromethyl)ethane-1,2-dithiolates. The preparation, electrochemical properties, and X-ray crystal structures of the square-planar nickel complexes, in both their dianionic diamagnetic [Ni(tfadt)(2)](2)(-) and their monoanionic paramagnetic [Ni(tfadt)(2)](*)(-) forms, are reported, as n-Bu(4)N(+), PPh(4)(+), and (18-crown-6)Na(+) salts, respectively. In the [(18-crown-6)Na](2)[Ni(tfadt)(2)] salt, each CN moiety of the [Ni(tfadt)(2)](2)(-) dianion is coordinated to a (18-crown-6)Na(+) cation through a CN...Na interaction [N...Na = 2.481(3) A], affording an "axle with wheels" model where two MeOH molecules act as axle caps. On the other hand, in [(18-crown-6)Na][Ni(tfadt)(2)], each (18-crown-6)Na(+) cation is coordinated on both sides by the CN groups of two monoanionic [Ni(tfadt)(2)](*)(-) complexes with N...Na(+) distances at 2.434(5) and 2.485(4) A, giving rise to heterobimetallic chains with alternating (18-crown-6)Na(+) and [Ni(tfadt)(2)](*)(-) ions. These two examples demonstrate the attractive ability of the CN moieties in the [Ni(tfadt)(2)](2)(-)(,)(*)(-) complexes to coordinate metallic cationic centers. The paramagnetic salts of the anionic [Ni(tfadt)(2)](*)(-) complex follow Curie-type law in the 2-300 K temperature range, indicating the absence of intermolecular magnetic interactions in the solid state. The complexes are found in their trans form in all crystal structures, while density functional theory calculations establish that both forms have essentially the same energy. A cis-trans interconversion process is observed by variable-temperature NMR on the dianionic [Ni(tfadt)(2)](2)(-) complex with a coalescence temperature T(c) of 260 K and a free energy of activation of 51-53 kJ mol(-)(1).  相似文献   

14.
Rare-earth metal alkyl tri(tert-butoxy)silanolate complexes [Ln{mu,eta2-OSi(O(t)Bu)3}(CH2SiMe3)2]2 (Ln = Y (1), Tb (2), Lu (3)) were prepared via protonolysis of the appropriate tris(alkyl) complex [Ln(CH2SiMe3)3(thf)2] with tri(tert-butoxy)silanol in pentane. Crystal structure analysis revealed a dinuclear structure for with square pyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta2-bridging coordination mode giving a 4-rung truncated ladder and non-crystallographic inversion centre. Addition of two equiv. of 12-crown-4 to a pentane solution of 1 or 3 respectively gave [Ln{OSi(O(t)Bu)(3)}(CH2SiMe3)2(12-crown-4)].12-crown-4 (Ln = Y (4), Lu (5)). Crystal structure analysis of 5 showed a slightly distorted octahedral geometry at the lutetium centre. The silanolate ligand adopts an eta(1)-terminal coordination mode, whilst the crown ether unit coordinates in an unusual kappa3-fashion. Reaction of 1-3 with [NEt3H]+[BPh4]- in thf yielded the cationic derivatives [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[BPh4]- (Ln = Y (6), Tb (7) and Lu (8)); coordination of crown ether led to compounds of the form [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(L)(thf)n]+[BPh4]- (Ln = Y, Lu, L = 12-crown-4, n = 1 (9,10); Ln = Y, Lu, L = 15-crown-5, n = 0 (11,12)). Reaction of 1 with [NMe2PhH]+[B(C6F5)4]-, [Al(CH2SiMe3)3] or BPh3 in thf gave the ion pairs [Y{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[A]- ([A]- = [B(C6F5)4]- (13), [Al(CH2SiMe3)4]- (14), [BPh3(CH2SiMe3)]- (15)), whilst two equiv. [NMe2PhH]+[BPh4]- with 1 in thf produced the dicationic ion triple [Y{OSi(O(t)Bu)3}(thf)6]2+[BPh4]-2 (16). Crystal structure analysis revealed that 16 is mononuclear with pentagonal bipyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta(1)-terminal fashion. All diamagnetic compounds have been characterized by NMR spectroscopy. 1, 3, 4, 6 and 13 were tested as olefin hydrosilylation pre-catalysts with a variety of substrates; 1 was found to be highly active in 1-decene hydrosilylation.  相似文献   

15.
Treatment of anhydrous chromium(III) chloride with 2 or 3 equivalents of 1,3-di-tert-butylacetamidinatolithium or 1,3-diisopropylacetamidinatolithium in tetrahydrofuran at ambient temperature afforded Cr(tBuNC(CH3)NtBu)2(Cl)(THF) and Cr(iPrNC(CH3)NiPr)3 in 78% and 65% yields, respectively. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with the potassium salts derived from pyrazoles and 1,2,4-triazoles afforded Cr(tBuNC(CH3)NtBu)2(X), where X=3,5-disubstituted pyrazolato or 3,5-disubstituted 1,2,4-triazolato ligands, in 65-70% yields. X-Ray crystal structure analyses of Cr(tBuNC(CH3)NtBu)2(Me2pz) (Me2pz=3,5-dimethylpyrazolato) and Cr(tBuNC(CH3)NtBu)2(Me2trz) (Me2trz=3,5-dimethyl-1,2,4-triazolato) revealed eta2-coordination of the Me2pz and Me2trz ligands. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with trifluoromethyltetrazolatosodium (NaCF3tetz) in the presence of 4-tert-butylpyridine afforded Cr(tBuNC(CH3)NtBu)2(CF3tetz)(4-tBupy) in 30% yield. An X-ray crystal structure determination showed eta1-coordination of the tetrazolato ligand through the 2-nitrogen atom. The complexes Cr(iPrNC(CH3)NiPr)3 and Cr(tBuNC(CH3)NtBu)2(X) are volatile and sublime with <1% residue between 120 and 165 degrees C at 0.05 Torr. In addition, these complexes are thermally stable at >300 degrees C under an inert atmosphere such as nitrogen or argon. Due to the good volatility and high thermal stability, these new compounds are promising precursors for the growth of chromium-containing thin films using atomic layer deposition.  相似文献   

16.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

17.
Reaction of Mo(2)Cl(4)(dppm)(2) (dppm = bis(diphenylphosphino)methane) with 6 equiv of [n-Bu(4)N][CN] or [Et(4)N][CN] in dichloromethane yields [n-Bu(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (1) and [Et(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (2), respectively. The corresponding one- and two-electron oxidation products [n-Bu(4)N][Mo(2)(CN)(6)(dppm)(2)] (3) and Mo(2)(CN)(6)(dppm)(2) (4)were prepared by reactions of 1 with the oxidant NOBF(4). Single-crystal X-ray structures of 2.2CH(3)CN, 3.2CH(3)CN.2H(2)O, and 4.2CH(3)NO(2) were performed, and the results confirmed that all three complexes contain identical ligand sets with trans dppm ligands bisecting the Mo(2)(mu-CN)(2)(CN)(4) equatorial plane. The binding of the bridging cyanide ligands is affected by the oxidation state of the dimolybdenum core as evidenced by an increase in side-on pi-bonding overlap of the mu-CN in going from 1 to 4. The greater extent of pi-donation into Mo orbitals is accompanied by a lengthening of the Mo-Mo distance (2.736(1) A in Mo(2)(II,II) (2), 2.830(1) A in Mo(2)(II,III) (3), and 2.936(1) A in Mo(2)(III,III) (4)). A computational study of the closed-shell members of this homologous series, [Mo(2)(CN)(6)(dppm)(2)](n)() (n = 2-, 0), indicates that the more pronounced side-on pi-donation evident in the X-ray structure of 4 leads to significant destabilization of the delta orbital and marginal stabilization of the delta() orbitals with respect to nearly degenerate delta and delta orbitals in the parent compound, 2. The loss of delta contributions combined with the reduced orbital overlap due to higher charges on molybdenum centers in oxidized complexes 3 and 4 is responsible for the observed increase in the length of the Mo-Mo bond.  相似文献   

18.
Two mononuclear bis(oxamato) complexes with the formula [nBu4N]2[M(2,3-acbo)] (M=Ni (), Cu (), with acbo=anthra-9,10-chinone-2,3-bis(oxamato) have been synthesized starting from symmetric diethyl N,N'-anthra-9,10-chinone-2,3-bis(oxamate) (, 2,3-acboH2Et2). The crystal structures of and have been determined, verifying that the transition metal ions are eta4(kappa2N,kappa2O) coordinated by the [2,3-acbo]4- ligands. Using the asymmetric diethyl N,N'-anthra-9,10-chinone-1,2-bis(oxamate) (, 1,2-acboH2Et2) leads, under otherwise identical reaction conditions, to the novel bis(oxamato) complex [(n)Bu4N]2[Ni(1,2-acbo)] () whereby in the case of Cu(II) the derivate [nBu4N]2[Cu(aibo)2] () (aibo=anthra[1,2-d]-(imidazole-2-carboxylato)-6,11-dione) has been obtained. The crystal structures of and have been determined, displaying that the Ni(II) ion of is eta4(kappa2N,kappa2O) coordinated by the [1,2-acbo]4- ligand. The Cu(II) ion of is coordinated by two [aibo]2- ligands, giving rise to an approximately square-planar trans-bis(aibo-N,O) arrangement. Using the symmetric diethyl N,N'-4,5-dinitro-o-phenylene-bis(oxamate) (, niboH2Et2), possessing strongly electron withdrawing NO2-groups, leads under otherwise identical reaction conditions to the bis(oxamato) complex [nBu4N]2[Ni(nibo)] (), whereby in the case of Cu(II) the derivate [nBu4N]2[Cu(niqo)2] () (niqo=7,8-dinitro-2,3-quinoxalinedionato) has been obtained. The crystal structures of and have been determined, ensuring that the Ni(II) ion of is eta(4)(kappa2N,kappa2O) coordinated by the [nibo]4- ligand. The Cu(II) ion of is coordinated by four oxygen atoms of two [niqo]2- ligands, giving rise to an approximately square-planar coordination geometry.  相似文献   

19.
Coordinatively unsaturated diruthenium complexes, [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+, of which crystallography revealed structures bearing a bridging amidinate ligand perpendicular to the Ru-Ru axis, were synthesized by anion exchange of [(eta5-C3Me5(Ru(mu2-iPrNC(Me)=NiPr)Ru(eta5-C5Me5)]+ Br- by weakly coordinating anions. Variable-temperature NMR showed rapid motion of the bridging amidinate ligand. The coordinatively unsaturated nature of the cationic complexes provides their high reactivity toward a series of two electron donor ligands. Oxidative addition of molecular hydrogen occurred to give [(eta5-C5Me5)Ru(mu2-iPrNC(Me)=NiPr)(mu-H)Ru(eta5-C5Me5)(H)]+, which was isolated and characterized.  相似文献   

20.
The two clusters [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] (1) and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)] (2) (dppm = PPh(2)CH(2)PPh(2)), both of which contain pendant PPh(2) groups, react with BH(3).thf to afford the species [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] (3) and [9,9-eta(2)-(eta(2)-(BH(3)).dppm))-nido-9,7,8-RhC(2)B(8)H(11)] (4), respectively. These two species are very similar in that they both contain the bidentate ligand [(BH(3)).dppm], which coordinates to the Rh center via a PPh(2) group and also via a eta(2)-BH(3) group. Thus, the B atom in the BH(3) group is four-coordinate, bonded to Rh by two bridging hydrogen atoms, to a terminal H atom, and to a PPh(2) group. At room temperature, the BH(3) group is fluxional; the two bridging H atoms and the terminal H atom are equivalent on the NMR time scale. The motion is arrested at low temperature with DeltaG++ = ca. 37 and 42 kJ mol(-1), respectively, for 3 and 4. Both species are characterized completely by NMR and mass spectral measurements as well as by elemental analysis and single-crystal structure determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号