首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Visible light‐driven Al‐doped TiO2 with different aluminum contents (2, 5 and 10 mol%) were synthesized via a facile sol–gel method. Fourier transform infrared (FTIR), UV‐visible diffuse reflectance, energy dispersive Xray (EDX) spectroscopy as well as X‐ray diffraction (XRD), X‐ray fluorescence (XRF) and scanning electron microscopy (SEM) methods were used for the characterization of the obtained nanoparticles. The photocatalytic performance of the samples was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The yield of the degradation RhB was estimated to be 71%, 89%, 65% and 56%, for the bare TiO2, 2%, 5% and 10% Al‐doped TiO2, respectively. It was found that 2 mol% of Al‐doped TiO2 shows the best photocatalytic performance. In low concentration of dopant, separation of photogenerated electron–hole pairs promoted, and subsequently, the degradation efficiency increased. It was proposed that the degradation of RhB by 2 mol% Al‐doped TiO2 photocatalyst follows both N‐deethylation and chromophore cleavage mechanisms, while the N‐deethylation still predominated over cleavage of dye chromophore structure. The key role of hydroxyl radicals in RhB degradation was verified by the effects of scavengers. In addition, the photocatalyst can be reused for three runs without any significant loss of its catalytic activity.  相似文献   

2.
Mesoporous TiO2 with anatase crystalline structure (MTiO2/CAS) has been synthesized by using chrome azurol S (CAS, 2″,6″-dichloro-3,3′-dimethyl-4′-hydroxy-3″-sulfofuchson-5,5′-dicarboxylic acid) as template. It was characterized by X-ray diffraction, nitrogen adsorption/desorption, diffuse reflectance UV–visible and FT-IR spectrometry, and transmission electron microscopy. It was found that MTiO2/CAS had substantial photocatalytic activity in the degradation of methylthionine chloride, rhodamine B, gentian violet, safranin T, methyl violet, and fuchsine basic whereas Degussa P25 (P25) had negligible photodegradation yield (<6%) under visible light irradiation.  相似文献   

3.
赵凤伟  李静  尚静  汪青 《催化学报》2010,31(12):1496-1500
 采用浸渍-提拉法将 TiO2 薄膜负载在具有一定电极构型的氧化铟锡 (ITO) 基底上, 制备了全固态 TiO2 平面型器件 (ITO/TiO2/ITO). 采用扫描电镜对器件的表面形貌和膜厚进行了表征. 以紫外光下器件光电协同催化降解罗丹明 B(RhB) 为模型反应, 考察了器件的构型和空穴捕获剂 (乙醇) 对其光电催化性能的影响. 结果表明, 初始浓度为 10 mg/L 的 RhB 在 1.5 V 偏压和 NaCl (1.5 mol/L) 为电解质的条件下, 光照 60 min 脱色率达到 83%; 阳极面积较大的器件光电催化性能较好, 刻蚀宽度为 2 mm 时光电催化活性最高; 空穴与 TiO2表面吸附的 H2O 氧化生成的羟基自由基对液相光电催化降解 RhB 起着重要作用.  相似文献   

4.
Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye from liquid phase was done using mixed-phase nanocrystalline TiO2 for enhancement of charge separation and UV-visible-light-driven photocatalysis capabilities. The mixed-phase nanocrystalline TiO2 was characterized using various analytical techniques including XRD, TEM, UV-vis DRS and PL to investigate its phase composition and structure, nanocrystalline size distribution, band gap energy, and photoluminescence properties. The photocatalytic discoloration efficiency of mixed-phase nanocrystalline titania was explored by monitoring the decomposition of RhB dye in an aqueous solution. The results showed that the as-prepared mixed-phase nanocrystalline TiO2 was excellent for degradation of RhB molecule, and the combination of crystal phase of anatase and rutile has great effect on decomposition of RhB. The kinetic studies demonstrate that the photocatalytic oxidation reaction followed a pseudo-first-order expression due to the evidence of linear correlation between ln(c/c 0) vs. reaction time t. Moreover, the aqueous RhB dye decomposition over the as-prepared mixed-phase nanocrystalline TiO2 catalyst is controlled by RhB pre-adsorption.  相似文献   

5.
Ag掺杂型空心TiO2纳米微球的制备与表征及其光催化性能   总被引:1,自引:0,他引:1  
通过甲基丙烯酸与苯乙烯的乳液聚合制备了表面载有阴离子的聚苯乙烯(PSt)纳米乳胶粒. 在乙醇与水的混合溶剂中, 用硅烷偶联剂乙烯基三甲氧基硅烷对其进行表面改性. 以此乳胶粒为模板, 加入钛酸四丁酯和硝酸银制备了Ag2O掺杂型聚苯乙烯/二氧化钛(PSt/TiO2)复合微球. 对该微球在180 °C进行液相预处理、干燥、500 °C煅烧等步骤制备了Ag 掺杂型Ag-TiO2复合粒子. 通过扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)等手段对PSt/TiO2复合粒子及Ag-TiO2空心粒子的形貌及晶体结构等进行了表征. 考察了Ag-TiO2复合粒子在紫外光(365 nm)与紫外-可见光(370-760 nm)下对罗丹明B (RhB)降解的催化活性. 结果表明, 与不含银的TiO2空心微球相比, 在紫外光照射下, 银含量(nAg/nTi)为0.1%的Ag-TiO2复合粒子对RhB的降解率提高了11%左右; 在紫外-可见光照射下, nAg/nTi为1.0%和2.0% 的Ag-TiO2复合粒子对RhB的降解率提高了30%左右.  相似文献   

6.
Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye from liquid phase was done using anatase-phase nanocrystalline TiO2 synthesized via a modified sol-gel process. The anatase-phase nanocrystalline TiO2 was characterized using various analytical techniques including XRD, UV-vis DRS, PL, and FTIR to investigate its phase composition and structure, nanocrystalline size, band gap energy, photoluminescence and surface properties of the prepared systems. The photocatalytic discoloration efficiency of anatase-phase nanocrystalline titania was investigated by monitoring the decomposition of RhB dye as target compounds in an aqueous solution. The results showed that the as-prepared anatase-phase nanocrystalline TiO2 was excellent for degradation of RhB molecule, and the crystallite size, excitonic PL and surface hydroxyl content have intimate relationship with the decomposition efficiency of RhB. The reaction mechanism was proposed and the results demonstrate that the role of direct photolysis on RhB dye degradation can be neglected. Meanwhile, the Langmuir-Hinshelwood kinetic model describes the photodecay date of RhB in consistent with a first order powder law and thus photocatalytic oxidation reaction followed a pseudo-first-order kinetics.  相似文献   

7.
The chemical reduction method was used to synthesize nickel oxide particles (NiO) and NiO supported on titanium dioxide (NiO/TiO2 nanocomposite). The composites were characterized through scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The morphological investigation showed that pseudocubic NiO are present in dispersed as well as agglomerated forms. Whereas NiO particles (<200 nm) are evenly deposited over the surface of TiO2 in NiO/TiO2 composite. The formation of NiO and NiO/TiO2 was also verified by XRD analysis. The synthesized NiO and NiO/TiO2 were used as photocatalysts for the degradation of Orange II (OII) dye. According to the degradation investigation, both NiO and NiO/TiO2 composite degraded OII dye more efficiently when exposed to UV light. The results indicated that NiO degraded 93% and NiO/TiO2 composites degraded approximately 96% of OII dye within 30 min. Both photocatalysts are highly sustainable and have significant OII dye degradation recyclability. Moreover, NiO and NiO/TiO2 exhibited promising bioactivities (antioxidant activity of 80%) against the pathogenic bacteria Citrobacter and Providencia, which is comparable with the standard ascorbic acid (88%).  相似文献   

8.
The mesoporous titanium dioxide (MTiO2) photocatalysts co‐doped with Fe and H3PW12O40 were synthesized by template method using tetrabutyl titanate (Ti(OC4H9)4), Fe(NO3)k39H2Oand H3PW12O40 as precursors and Pluronic P123 as template. The as‐prepared photocatalyst was characterized by N2 adsorption‐desorption measurements, X‐ray diffraction (XRD), scanning electron microscopy (SEM) and UV‐vis adsorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl blue (MB) (50 mg/L) in an aqueous solution. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of ca. 10 nm with high surface area of ca. 150 m2/g. The results of MB photodecomposition showed that co‐doped mesoporous TiO2 exhibited higher photocatalytic activities than un‐doped, single‐doped mesoporous TiO2 under UV and visible light irradiation. It was shown that the co‐doped MTiO2 could be activated by visible light and could thus be used as an effective catalyst in photo‐oxidation reactions. The synergistic effect of Fe and H3PW12O40 co‐doping played an important role in improving the photocatalytic activity.  相似文献   

9.
A Ga2O3–TiO2 photocatalyst was synthesized by a mechanomixing method followed by a sonication technique using different amplitudes of sonication (0%, 25%, 50%, and 75% of 20 kHz). The prepared photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared, Brunauer–Emmett–Teller (BET) surface area (SBET), zeta potential, and optical techniques. Ga2O3–TiO2 exhibited an excellent photocatalytic activity for Rhodamine B (RhB) dye degradation under UV irradiation. The RhB degradation rate rose linearly with the increase of sonication amplitude. The photodegradation rate (k) of the synthesized samples was calculated according to the Langmuir–Hinshelwood kinetic expression. It reached a maximum of 5.25 × 10−2 min−1 with R2 of 0.99 for Ga2O3–TiO2 (75%) photocatalysts. The main reactive species were detected through radical scavenging experiments. The formation of hole reactive species is the rate-determining step in the case of Ga2O3–TiO2 (75%) photocatalysts.  相似文献   

10.
Silver-titania nanocomposites (Ag-TiO2 NCs) have unique functional attributes due to their photocatalytic and antibacterial properties. In this study, titania nanoparticles (TiO2-NPs) were successfully in-situ decorated with silver nanoparticles (Ag-NPs) using the aqueous extract of goji berries (Lycium barbarum L.) as a bioreducing and stabilizing agent. Different Ag-TiO2 NCs were synthesized by treating different concentrations of silver nitrate with a specific concentration of TiO2-NPs in the presence of fruit extract. The green-synthesized NCs were characterized using several techniques viz., ultraviolet–visible spectrophotometry, X-ray diffractometry (XRD), scanning electron microscopy, field-emission transmission electron microscopy (FE-TEM), Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. XRD analysis revealed the formation of face-centered cubic (fcc) crystals, and FE-TEM analysis revealed the embedment of Ag-NPs throughout the surface of TiO2-NPs. The average size of Ag-NPs on TiO2-NPs increased from 11.2 ± 3.05 nm to 16.4 ± 4.5 nm with an increase in the concentration of silver ions, and the morphology of Ag-NPs was predominantly quasi-spherical and hexagonal. These NCs exhibited an excellent photocatalytic degradation of an azo dye, methylene blue (MB). The synthesized Ag-TiO2 NCs (3:1) showed higher photocatalytic degradation efficiency of ∼ 93.4% for MB in 130 min under visible light irradiation. Ag-TiO2 NCS also exhibited good antibacterial activities towards Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). Therefore, the formation of Ag-NPs on the surface of TiO2-NPs to form Ag-TiO2 NCs exhibits eco-friendly photocatalytic degradation of azo dye contaminants as well as antibacterial activity.  相似文献   

11.
以硝酸铟作为前驱体,在蒸馏水和乙二胺的混合溶剂中制备出了InOOH纳米晶,详细地考察了反应溶剂及温度对终产物的影响。利用X射线粉末衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、扫描电子显微镜(SEM)和透射电镜(TEM)对样品的晶相结构、光吸收性质及其形貌进行了详细的表征。考察了样品在紫外光下及可见光下对液相中的染料罗丹明B(RhB)的光催化降解性能。发现InOOH在紫外光下可以彻底分解RhB,而在可见光下只能使RhB脱色。InOOH在紫外光和可见光下对RhB的分解遵循两种不同的反应机制。  相似文献   

12.
In this study, we synthesized Tb/Tourmaline/TiO2 nano tubes (NTs) through a solgel-hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectromicroscope, scanning electron microscopy, transmission electron microscopy and UV-vis diffuse reflectance spectroscopy. The resulting Tb/Tourmaline/TiO2 NTs exhibited higher photocatalytic activity than pure TiO2 and TiO2 nano particles (NPs) in the degradation of menthyl orange under UV-light. Results revealed that doping rare earth element Tb could narrow the wide band gap of TiO2 and tourmaline could trap the photogenerated electron of TiO2 to inhibit the recombination of photogenerated electron-hole pairs.  相似文献   

13.
In this study, the characterization and photocatalytic activity of TiO2 nanotube arrays prepared by anodization process with starch addition were investigated in detail. The results suggested that the optimum mass fraction of starch added in anodization process was 0.1%, with which TiO2 nanotube arrays owning good tubular structure were synthesized. The tube length and average inner diameter of nanotubes were approximately 4 μm and 30 nm, respectively. Through the characterization of TiO2 nanotube arrays by energy dispersive spectrometer, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Fourier Transform Infrared (FTIR) spectroscopy, it was found that the as‐prepared nanotubes possessed well uniformed and higher photodegradation responsive than the pure TiO2. Moreover, it was expected that the as‐prepared nanotubes exhibited good photocatalytic activity for the degradation of RhB under UV‐light irradiation, which could be ascribed to their good morphology, enhanced UV‐light absorption property and electron transmission ability during the photocatalytic reaction. In addition, the nanotubes were not significantly regenerated during the cycling runs experiment. Overall, this study could provide a principle method to synthesize TiO2 nanotube arrays with enhanced photocatalytic activity by anodization process with starch addition for environmental purification.  相似文献   

14.
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (UV–vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).  相似文献   

15.
花状TiO2分级结构的可控合成与其光催化性能   总被引:1,自引:0,他引:1  
采用水热法可控合成了花状TiO2分级结构材料,运用扫描电镜、透射电镜、X射线衍射、N2物理吸附-脱附等手段,对其进行了表征,系统研究了NaOH用量、H2O2浓度、HNO3浓度、反应温度及时间等因素对所得样品形貌的影响,并评价了它们的光催化性能.结果表明,花状TiO2分级结构为锐钛矿相,颗粒大小均一;随制备条件的变化,构成花状TiO2分级结构的基元结构分别为纳米线、纳米片,纳米线直径约25nm,纳米片厚度不足10nm;该样品具有较高的比表面积,表现出良好的单次光催化活性与重复使用性能.  相似文献   

16.
The photocatalytic degradation for some kinds of dye-constituent aromatics with TiO2 in the presence of phosphate anions in aqueous dispersion was investigated under both visible light (λ>480 nm) and UV irradiation. The influences of phosphate anion upon the degradation of organics under these different conditions was revealed by the measurement of point of zero ξ-potential (P ZC) of TiO2, UV-VIS spectra, HPLC and LC-MS. The adsorption and photodegradation of some organics, which adsorb on the surface of TiO2 by a dominating group bearing a positive charge, was enhanced, while that of others, which adsorb on the surface of TiO2 by a dominating group bearing negative charge, was depressed by the presence of phosphate anions under UV irradiation at the experimental conditions (pH 4.3). It was confirmed that better adsorption of organics on the surface of TiO2 had an advantage in their photocatalytic degradation under UV irradiation. On the other hand, although the adsorption of rhodamine B (RhB) and methylene Blue (MB) markedly increased, their degradation under visible light irradiation was depressed in the presence of phosphate anions. It is suggested that phosphate anion greatly blocked the electron transfer from excited RhB and MB molecules as RhB and MB molecules predominantly adsorbed on the surface of TiO2 through the electrostatic interaction with surface adsorbed phosphate anions.  相似文献   

17.
One‐dimensional (1D) CeO2/Bi2WO6 heterostructured nanofibers with a diameter of about 300 nm were successfully synthesized by using a straightforward strategy combining an electrospinning technique with a sintering process. The acquired products were characterized by thermogravimetric and differential scanning calorimetric (TG‐DSC), Fourier transform infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area measurements, and UV/Vis spectroscopy. The obtained CeO2/Bi2WO6 heterostructured nanofibers exhibited an excellent photocatalytic property for the degradation of Rhodamine B (RhB) dye driven by visible light due to the promoted separation of photoelectrons and holes and the large contact area between the photocatalyst and organic pollutant.  相似文献   

18.
Ag nanoparticles (Ag NPs) embedded titanium dioxide (TiO2) nanofibers were fabricated by colloidal sol process, electrospinning, and calcination technique. Calcination of the electrospun nanofibers were heat treated at 600°C for 180 minutes in air atmosphere. X-ray diffraction patterns exhibited that the anatase phase and silver coexisted in the resulted Ag NPs/TiO2 nanofibers; transmission electron microscopy demonstrated Ag NPs well spread in the porous microstructure of composite fibers. The prepared nanofibers were utilized as photocatalyst for degradation of methyl orange. The degradation rate of methyl orange dye solution containing Ag/TiO2 composite nanofibers is 99% only after irradiation for 3 hours. It is proposed that these new Ag NPs/TiO2 composite nanofibers will have potential application in water pollution treatment.   相似文献   

19.
In this work we synthesize a novel and highly efficient photocatalyst for degradation of methyl orange and rhodamine B. In addition, a new method for synthesis of Fe_3O_4@SiO_2@TiO_2@Ho magnetic core-shell nanoparticles with spherical morphology is proposed. The crystal structures, morphology and chemical properties of the as-synthesized nanoparticles were characterized using Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive X-ray(EDS), X-ray diffraction(XRD), UV–vis diffuse reflectance spectroscopy(DRS) and vibrating sample magnetometer(VSM) techniques. The photocatalytic activity of Fe_3O_4@SiO_2@TiO_2@Ho was investigated by degradation of methyl orange(MO) as cationic dye and rhodamine B(Rh B) as anionic dye in aqueous solution under UV/vis irradiation. The results indicate that about 92.1% of Rh B and78.4% of MO were degraded after 120 and 150 min, respectively. These degradation results show that Fe_3O_4@SiO_2@TiO_2@Ho nanoparticles are better photocatalyst than Fe3O4@Si O2@TiO 2@Ho for degradation of MO and Rh B. As well as, the catalyst shows high recovery and stability even after several separation cycles.  相似文献   

20.
In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号