首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
氮化硼纳米管的研究进展   总被引:2,自引:0,他引:2  
氮化硼纳米管的研究进展;结构;制备;性能;储氢;综述  相似文献   

2.
Boron nitride (BN) nanotubes were synthesized through chemical vapor deposition over a wafer made by a LaNi5/B mixture and nickel powder at 1473 K. Scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were performed to characterize the microstructure and composition of BN nanotubes. It was found that the obtained BN nanotubes were straight with a diameter of 30-50 nm and a length of up to several microns. We first verify that the BN nanotubes can storage hydrogen by means of an electrochemical method, though its capacity is low at present. The hydrogen desorption of nonelectrochemical recombination in cyclic voltammograms, which is considered as the slow reaction at BN nanotubes, suggests the possible existence of strong chemisorption of hydrogen, and it may lead to the lower discharge capacity of BN nanotubes. It is tentatively concluded that the improvement of the electrocatalytic activity by surface modification with metal or alloy would enhance the electrochemical hydrogen storage capacity of BN nanotubes.  相似文献   

3.
The physisorption and chemisorption of hydrogen in BN nanotubes, investigated by density functional theory (DFT), were compared with carbon nanotubes. The physisorption of H2 on BN nanotubes is less favorable energetically than on carbon nanotubes; BN nanotubes cannot adsorb hydrogen molecules effectively in this manner. Chemisorption of H2 molecules on pristine BN nanotubes is endothermic. Consequently, perfect BN nanotubes are not good candidates for hydrogen storage by either mechanism. Other strategies must be utilized if BN nanotubes are to be employed as hydrogen storage media such as utilizing them as supporting media for hydrogen-absorbing metal nanoclusters.  相似文献   

4.
Linear scaling methods provide total energy, but no energy levels and canonical wave functions. From the density matrix computed through the density matrix purification methods, we propose an order-N [O(N)] method for calculating both the energies and wave functions of band edge states, which are important for optical properties and chemical reactions. In addition, we also develop an O(N) algorithm to deal with doped semiconductors based on the O(N) method for band edge states calculation. We illustrate the O(N) behavior of the new method by applying it to boron nitride (BN) nanotubes and BN nanotubes with an adsorbed hydrogen atom. The band gap of various BN nanotubes are investigated systematically and the acceptor levels of BN nanotubes with an isolated adsorbed H atom are computed. Our methods are simple, robust, and especially suited for the application in self-consistent field electronic structure theory.  相似文献   

5.
The interaction between H(2) molecules and boron nitride (BN) single-walled nanotubes with BN divacancies is investigated with density-functional theory. Our calculations reveal that H(2) molecules adsorb physically outside defective BN nanotubes, and cannot enter into BN nanotubes through bare BN divacancies because the energy barrier is as high as 4.62 eV. After the defects are saturated by hydrogen atoms, the physisorption behavior of H(2) molecules is not changed, but the energy barrier of H(2) molecules entering into BN nanotubes through the defects is reduced to 0.58 eV. This phenomenon is ascribed to hydrogen saturation induced reduction of electrostatic potential around the defects.  相似文献   

6.
Catalyzed collapse and enhanced hydrogen storage of BN nanotubes   总被引:1,自引:0,他引:1  
The novel morphology of BN nanotubes with a collapsed structure has been discovered by a metal-catalyzed treatment. The collapse causes the dramatic enlargement of a specific surface area of BN nanotubes and remarkably enhances the hydrogen storage capacity of BN nanotubes.  相似文献   

7.
With the density-functional theory and nudged elastic band method, the adsorption and dissociation of the hydrogen molecule on the boron nitride (BN) nanotubes with and without defects are studied theoretically. Hydrogen molecule physically adsorbs on the surface of the BN layer and nanotubes. The dissociation of the hydrogen molecule on the surface of the perfect BN layer and nanotubes is endothermic, and the energy barrier reduces with the decrease of the diameter of the tubes, while it is still larger than 2.0 eV for the (7,0) BN nanotube. Antisite, carbon substitutional, vacancy, and Stone-Wales 5775 defects on the wall of the tube are considered. With the presence of the defects, the dissociation of the hydrogen molecule becomes exothermic and the dissociation barrier can be reduced to about 0.67 eV.  相似文献   

8.
9.
以非晶硼和氧化镍纳米颗粒为原料,在氨气中1100℃下合成了毛刺状竹节结构的氮化硼纳米管. 利用X射线衍射和透射电镜研究了氮化硼纳米管的结构和形貌. 竹节结构纳米管表面的毛刺是六方氮化硼的纳米薄片. 提出了一种基于固态硼和气态二氧化硼扩散的毛刺形貌生长机理.  相似文献   

10.
Adsorption of hydrogen molecules on platinum-doped single-walled zigzag (8,0) boron nitride (BN) nanotube is investigated using the density-functional theory. The Pt atom tends to occupy the axial bridge site of the BN tube with the highest binding energy of -0.91 eV. Upon Pt doping, several occupied and unoccupied impurity states are induced, which reduces the band gap of the pristine BN nanotube. Upon hydrogen adsorption on Pt-doped BN nanotube, the first hydrogen molecule can be chemically adsorbed on the Pt-doped BN nanotube without crossing any energy barrier, whereas the second hydrogen molecule has to overcome a small energy barrier of 0.019 eV. At least up to two hydrogen molecules can be chemically adsorbed on a single Pt atom supported by the BN nanotube, with the average adsorption energy of -0.365 eV. Upon hydrogen adsorption on a Pt-dimer-doped BN nanotube, the formation of the Pt dimer not only weakens the interaction between the Pt cluster and the BN nanotube but also reduces the average adsorption energy of hydrogen molecules. These calculation results can be useful in the assessment of metal-doped BN nanotubes as potential hydrogen storage media.  相似文献   

11.
Thin boron nitride nanotubes with unusual large inner diameters   总被引:1,自引:0,他引:1  
BN nanotubes, displaying the characteristics of few concentric layers (2–6 layers) but unusual large inner diameters (ranging from 8 to more than 10 nm), are synthesized by a chemical vapor deposition (CVD) method on -Al2O3 micrometer-range particles. The inner diameters are at least 5 nm larger than the previously reported BN nanotubes of similar layers. Some BN nanotubes are observed to be filled with B–N–O-based amorphous materials. Crystalline core fillings (in the form of boron carbide nanorods) were also discovered. The discussions suggested that the CVD growth behavior of BN nanotubes may be closely dependent on the underlying substrates, which may be helpful to the possible rational synthesis of BN nanotubes.  相似文献   

12.
An AlN nanotube (AlNNT) was theoretically predicted in 2003. In comparison with the carbon nanotubes, the AlNNTs are wide-band-gap nanostructures with high reactivity, high thermal stability and sharp electronic sensitivity toward some chemicals. The B3LYP predicts an HOMO–LUMO gap of 3.74–4.27 eV for zigzag AlNNTs, while the experimental bad gap of bulk AlN is about 6.28 eV. The lowest strain energy of AlNNTs relative to its AlN nanosheet compared to the nanosheets of carbon and BN nanotubes with an equivalent diameter suggests the feasibility of AlNNT synthesis from its nanosheet. Theoretical methods predict a Young’s Modulus of about 453 GPa for AlNNTs that is smaller than that of carbon (1 TPa), BN (870 GPa) and GaN (796 GPa) nanotubes. In 2003, the faceted single-crystalline hexagonal AlNNTs were synthesized and extensively explored by means of density functional theory calculations. Several works have suggested different potential applications for AlNNTs including chemical sensors, hydrogen storage, gas adsorbent, and electron field emitter. This review is a comprehensive study on the latest achievements in the structural analyses, synthesis, and property evaluations based on the computational methods on the AlNNTs in the light of the development of nanotubes.  相似文献   

13.
Nanocable models comprised of BN nanotubes filled with close-packed Cu nanowires were investigated by gradient-corrected density functional theory (DFT) computations. The optimal distance between the sidewall of BN nanotubes and the atoms in a copper nanowire is about 0.35 nm, with a weak insertion energy (ca. -0.04 eV per Cu atom). Hence, such nanocables are assembled by weaker van der Waals (vdW) forces, rather than by chemical bonding interactions. The electronic band structures of the BN/Cu hybrid systems are superposition of those of the separate components, the BN nanotubes, and the Cu nanowires. Since charge density analyses show that the conduction electrons are distributed only on the copper atoms, charge transport will occur only in these inner nanowires, which are effectively insulated by the outer BN nanotubes. On the basis of these computational results, BN/Cu hybrid structures should be ideal nanocables.  相似文献   

14.
Pure multi-walled BN nanotubes were synthesized via a carbon-free chemical vapor deposition process using boron and gallium oxide mixture as reaction precursor. Transmission electron microscopy was used to investigate their structure, morphology and defects. The wall deformation, dependent on tube diameter, was observed and explained in terms of strain relaxation of bond rotation. Opposed to carbon nanotubes, bending of BN nanotubes typically results in fracture at their concave side. Ring defect-related mechanism was proposed to interpret the fracture. The ring defects also result in the formation of a nanocone with 300° disclination. The nanocones end up with BN nanotubes exhibiting the small innermost shell ∼0.4 nm in diameter.  相似文献   

15.
Semiconductors with band gap widths of 1.5–2.8 eV are used as catalysts for hydrogen production by photochemical water splitting. The electronic states of BN nanotubes doped with Group III–V nontransition elements have been studied by quantum-chemical methods. It has been found that nanotubes with a small excess of boron or with carbon atoms substituted for some boron atoms can be used as candidates for creation of such catalysts since they have optical absorption in this spectral range.  相似文献   

16.
H2与C,BN和GaN纳米管的相互作用势能   总被引:2,自引:2,他引:0  
基于C,B,N和Ga与H原子间的L-J势函数,系统计算了H2处于(n,n)(n=8,10,12)单壁C,BN和GaN纳米管内部及外部不同处的势能.根据势能变化曲线,分析了3种纳米管氢物理吸附能力的差异,给出了H2在3种纳米管外部的势能表达式.研究结果表明:3种纳米管内部的氢吸附力均分别高于管外;随着纳米管直径的增加,各纳米管管内的氢吸附力均略有下降,而管外变化不明显;GaN,BN和C纳米管依次具有更好的储氢能力.  相似文献   

17.
BN nanotubes are coated with SnO(2) by a simple chemical reaction in solution. BN nanotubes are stirred inside a SnCl(2) solution at room temperature for 1 h. The coating is uniform with complete coverage. The coating thickness is typically 1-5 nm. The coating layer contains SnO(2) nanoparticles with sizes ranging from 1 to 5 nm.  相似文献   

18.
Catalytic removal of H2 from boron-nitride (BN)-based nanomaterials at ambient conditions is of paramount importance in order to develop lightweight hydrogen storage media. Here, the DLPNO-CCSD(T) technique is used to calculate accurate relative energies and activation barriers of Brønsted acid-initiated removal of H2 from hydrogenated BN nanotubes (HBNNTs) with six different acids. Three crucial steps are identified in the mechanism: first H2 release, catalyst regeneration via proton transfer, and second H2 release to ensure feasibility of the dehydrogenation proposal. Our computational studies reveal that sulfonic acids with appropriate electrophilicity can facilitate dehydrogenation of HBNNT at a low free energetic cost (∆G = 17 kcal/mol). Importantly, these findings illustrate the possibility of H2 release from BN nanomaterials at ambient conditions and provides hope for a sustainable chemical hydrogen storage strategy.  相似文献   

19.
Fluorination of BN nanotubes has been performed using a catalytic growth method, which leads to the appearance of markedly curved fluorine-doped BN sheets and converts originally insulating BN nanotubes to semiconductors, as confirmed by the comparative electron transport four-probe measurements on doped and undoped individual BN nanotubes.  相似文献   

20.
We have measured the thermal conductivity of bulky pellets made of various boron nitride (BN)-based nanomaterials, including spherical nanoparticles, perfectly structured, bamboo-like nanotubes, and collapsed nanotubes. The thermal conductivity strongly depends on the morphology of the BN nanomaterials, especially on the surface structure. Spherical BN particles have the lowest thermal conductivity while the collapsed BN nanotubes possess the best thermoconductive properties. A model was proposed to explain the experimental observations based on the heat percolation passage considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号