首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An artificial system of substrate‐induced dimerization assembly of chiral macrocycle catalysts enables a highly cooperative hydrogen‐bonding activation network for efficient enantioselective transformation. These macrocycles contain two thiourea and two chiral diamine moieties and dimerize with sulfate to form a sandwich‐like assembly. The macrocycles then adopt an extended conformation and reciprocally complement the hydrogen‐bonding interaction sites. Inspired by the guest‐induced dynamic assembly, these macrocycles catalyze the decarboxylative Mannich reaction of cyclic aldimines containing a sulfamate heading group. The imine substrate can be activated toward nucleophilic attack of β‐ketoacid by a cooperative hydrogen‐bonding network enabled by sulfamate‐induced dimerization assembly of the macrocycle catalysts. Highly efficient (>95 % yield in most cases) and enantioselective (up to 97.5:2.5 er) transformation of a variety of substrates using only 5 mol % macrocycle was achieved.  相似文献   

2.
Five new chiral macrocycles, 3a-e, have been prepared by the acylation cyclization of chiral diamine dihydrobromide intermediates 2a-c with 2,6-pyridinedicarbonyl dichloride in highly diluted solution at room temperature. The chiral diesters 1a-c needed for the preparation of the macrocycles were obtained from condensation of corresponding N-(Z)-L-amino acids and 2,6-bishydroxymethyl pyridine in the presence of DCC and DMAP. The enantiomeric recognition of chiral macrocycles 3a-e for D- and L-amino acid methyl ester hydrochlorides has been characterized by fluorescence spectra, which indicate that some of them exhibited significant chiral recognition for the enantiomers of D- and L-amino acid methyl ester hydrochlorides. The stoichiometry and binding constants of 3a-L-Am(2) and 3c-L-Am(2) complexes have been determined. An X-ray analysis of the chiral macrocycle 3b show that the chiral ligand is rather rigid and strained.  相似文献   

3.
A series of new chiral macrocycles containing the trans-1,2-diaminocyclohexane (DACH) subunit and arene- and oligoethylene glycol-derived spacers has been prepared in enantiomerically pure form. Four of the macrocycles have been characterized by X-ray crystallography, which reveals a consistent mode of intramolecular N-H···N hydrogen bonding and conformational variations about the N-benzylic bonds. Most of the macrocycles were found to differentiate the enantiomers of mandelic acid (MA) by (1)H NMR spectroscopy in CDCl(3); within the series of macrocycles tested, enantiodiscrimination was promoted by (i) a meta-linkage geometry about the arene spacer, (ii) the presence of naphthalene- rather than phenylene-derived arene spacers, and (iii) increasing length of the oligoethylene glycol bridge. (1)H NMR titrations were performed with optically pure MA samples, and the data were fitted to a simultaneous 1:1 and 2:1 binding model, yielding estimates of 2:1 binding constants between some of the macrocycles and MA enantiomers. In several cases, NOESY spectra of the MA:macrocycle complexes show differential intramolecular correlations between protons adjacent to the amine and carboxylic acid groups of the macrocycles and MA enantiomers, respectively, thus demonstrating geometric differences between the diastereomeric intermolecular complexes. The three most effective macrocycles were employed as chiral solvating agents (CSAs) to determine the enantiomeric excess (ee) of 18 MA samples over a wide ee range and with very high accuracy (1% absolute error).  相似文献   

4.
Novel chiral macrocycles consisting of two rigid oligoarylene rods and two chiral spiroindane clips have been synthesized by condensation of spiroindane diols and CF3-activated alpha-omega-difluorooligoaryls. Since a broad variety of planar aromatic macrocycles is known, our non-planar, chiral rings represent a new class of macrocyclic compounds. The first two examples, which contain quaterphenylene and diphenylbithiophene rods, are presented in this communication; for one of them a crystal structure is given. The chiroptical properties of the macrocycles can be interpreted as an interplay of the "intra-rod" helicity of individual oligoarylene rods and the "inter-rod" helicity between both chromophores of the macrocycle. The macrocycles can act as chiral dopands of commercially available, and novel, polymeric nematic liquid crystals (emissive polyfluorenes). The "intra-rod" helicity of individual oligoarylene rods is the main feature in determining the resulting helical twisting power (HTP). The cholestric induction in mesogenic, emissive polyfluorenes is of special interest for a realization of electronic devices that have a circularly polarized electroluminescence. The results are also important for an understanding of larger ensembles of chiral rodlike molecules, especially their pi-pi interactions.  相似文献   

5.
An artificial system of substrate-induced dimerization assembly of chiral macrocycle catalysts enables a highly cooperative hydrogen-bonding activation network for efficient enantioselective transformation. These macrocycles contain two thiourea and two chiral diamine moieties and dimerize with sulfate to form a sandwich-like assembly. The macrocycles then adopt an extended conformation and reciprocally complement the hydrogen-bonding interaction sites. Inspired by the guest-induced dynamic assembly, these macrocycles catalyze the decarboxylative Mannich reaction of cyclic aldimines containing a sulfamate heading group. The imine substrate can be activated toward nucleophilic attack of β-ketoacid by a cooperative hydrogen-bonding network enabled by sulfamate-induced dimerization assembly of the macrocycle catalysts. Highly efficient (>95 % yield in most cases) and enantioselective (up to 97.5:2.5 er) transformation of a variety of substrates using only 5 mol % macrocycle was achieved.  相似文献   

6.
Although various methods for switching the positions of macrocycles in bistable rotaxane-based molecular shuttles have been developed, exploiting such movements to trigger property changes has thus far received little attention. Here we describe one of the first examples of a property change achieved through a controlled large-amplitude translational motion in a rotaxane; a novel type of chiroptical switch is described, in which light-induced translation of the macrocycle along the thread of a [2]rotaxane produces a strong induced circular dichroism (ICD) response only when the macrocycle is hydrogen-bonded to a chiral peptide station.  相似文献   

7.
The synthesis of a new tetralactam macrocycle and the simultaneous formation of catenanes and larger octalactam macrocycles is reported. These species bear 2,2'-biquinoline moieties suitably positioned to bind a metal center at the outer periphery of the macrocycles. (1)H NMR chemical shifts permit the unambiguous distinction of transoid and cisoid conformations of the biquinoline moiety, thereby allowing an unequivocal identification of the catenane and octalactam structures, despite the fact that both have the same elemental composition and bear identical structural subunits. With the aid of an anion template effect, rotaxanes can be prepared from the smaller tetralactam macrocycle. These reveal significantly altered requirements in terms of the stopper size as compared to previously reported tetralactam wheels. Several copper(I)-mediated dimers and a (bpy)(2)Ru(II) complex (bpy=2,2'-bipyridine) have been synthesized from the tetralactam macrocycle and the rotaxanes. The anion binding abilities of the tetralactam macrocycle and its (bpy)(2)Ru(II) complex in DMSO have been compared by (1)H NMR titration experiments, which revealed significantly enhanced binding by the metal complex. Mass spectrometry has been used to study the potential formation of larger assemblies of copper(I) and the catenane built-up from two tetralactam macrocycles. Indeed, a 2:2 complex was identified. In contrast, the octalactam macrocycle of the same elemental composition yields only 1:1 complexes, with the Cu(I) ion connecting its two biquinoline moieties in the center of a figure-eight-shaped molecule. Molecular modeling studies support the structural assignments made.  相似文献   

8.
Calixarene-like chiral salen macrocycles can be used for the enantioselective fluorescent recognition of mandelic acid derivatives. It was observed that one enantiomer of mandelic acid causes a 28-fold increase in the fluorescence intensity of a chiral salen macrocycle, whereas the other enantiomer causes only a 14-fold fluorescence enhancement. This highly enantioselective fluorescent response makes chiral salen macrocycles useful for the enantioselective fluorescent recognition of some mandelic acid derivatives.  相似文献   

9.
A new class of aza-macrocycles with the highly distorted structure was found to exhibit unique properties. These macrocycles react with various lithium salts to form lithium complexes and their lithium complexation reactions depend on a substituent on the macrocyclic ring; slower rates and larger equilibrium constants were observed for the macrocycle with a bulkier substituent. The irradiation of these macrocycles by UV light was found to lead to the isomerization, and the photoisomerization rate of macrocycle with the bulky substituent was much faster. The highly distorted structure of these macrocycles makes it much easier to change the conformation of macrocyclic skeleton and these macrocycles have a variety of conformations. The factors to govern this conformational change were therefore explored. The solvent effect was examined by 1H NMR spectroscopy, because these macrocycles have a strong intramolecular hydrogen bond in the ring. As a result, the solvent was found to have a big effect on the 1H NMR spectra of macrocycles that could be explained in terms of the conformational change of macrocycle. This finding suggests the solvent to be an important way of controlling the conformation.  相似文献   

10.
Reaction of trans-[PdX2(SMe2)2](X = Cl or Br) with the chiral ligand LL = 1,1'-binaphthyl-2,2'-(NHC(= O)-3-C5H4N)2 gave the [2]catenane complexes trans-[{(PdX2)2(micro-LL)2}2], which are formed by self-assembly from 4 units each of trans-PdX2 and LL. The catenation is favored by the formation of multiple hydrogen bonds between the constituent macrocycles (4 x NHClPd, 2 x NHO double bond C). If the ligand LL is racemic, each macrocycle trans-[(PdX2)2(micro-LL)2] is formed in the meso form trans-[(PdX2)2(micro-R-LL)(micro-S-LL)] but the resulting [2]catenane is chiral as a direct result of the catenation step. This is the first time that this form of chiral [2]catenane has been observed. The enantiomers of the [2]catenane further self-assemble in the crystalline form, through secondary intermolecular PdX bonding, to form a racemic infinite supramolecular polymer of [2]catenanes.  相似文献   

11.
The tight binding enabled by tailor‐made macrocycles can be manipulated for tuning the catalysis process. In parallel to well‐developed crown ether‐based cation‐binding catalysis, a macrocycle‐enabled counteranion trapping strategy is presented for boosting highly efficient and enantioselective catalysis. A set of bis‐diarylthiourea macrocycles containing two BINOL moieties were designed and synthesized. They possess a well‐confined chiral cavity and strong binding affinities towards disulfonate anions. Caused by the tight binding, just 1 mol % macrocycle in combination with 1 mol % ethanedisulfonic acid can promote excellent conversion and up to 99 % ee in the Friedel–Crafts reaction of indoles with imines. The acid or the macrocycle alone do not afford any reactivity. The high catalytic efficiency and excellent stereocontrol was ascribed to large, complexation‐induced acidity enhancement and tight ion‐pairing facilitated by cave‐like macrocyclic cavity.  相似文献   

12.
Summary: The crystal structure of rigid, hollow, racemic binaphthyl poly(ether ketone) macrocycles has been elucidated by single crystal X‐ray analysis. Multitudinal interactions were identified within the chiral space group P212121. The structural analysis revealed that this macrocyclic compound contains an elliptic chiral cavity with a size of 9.80 × 5.18 Å, which is similar to that of cyclodextrins. The knowledge about the interaction sites and the structure of the binaphthyl‐based macrocycle provides a unique opportunity to understand its molecular or chiral recognition properties.

Space‐filling representation of the single (R)‐macrocycle.  相似文献   


13.
The proton‐binding behavior of solvated tetraamido/diamino quaternized macrocyclic compounds with rigid phenyl and flexible phenyl bridges in the absence or presence of an external electric field is investigated by molecular dynamics simulation. The proton can be held through H‐bonding interactions with the two carbonyl oxygen atoms in macrocycles containing rigid (phenyl) and flexible (propyl) bridges. The solute–solvent H‐bonding interactions cause the macrocyclic backbones to twist to different extents, depending on the different bridges. The macrocycle with the rigid phenyl linkages folds into a cuplike shape due to π–π interaction, while the propyl analogue still maintains the ellipsoidal ringlike shape with just a slight distortion. The potential energy required for proton transfer is larger in the phenyl‐containing macrocycle than in the compound with propyl units. When an external electric field with a strength of 2.5 V nm?1 is exerted along the carbonyl oxygen atoms, a difference in proton encircling is exhibited for macrocycles with rigid and flexible bridges. In contrast to encapsulation of a proton in the propyl analogue, the intermolecular solute–solvent H‐bonding and intramolecular π–π stacking between the two rigid phenyl spacers leads to loss of the proton from the highly distorted cuplike macrocycle with phenyl bridges. The competition between intra‐ and intermolecular interactions governs the behavior of proton encircling in macrocycles.  相似文献   

14.
The photoinduced pseudorotaxane formation between a photoresponsive axle and a tetralactam macrocycle was investigated in solution and on glass surfaces with immobilized multilayers of macrocycles. In the course of this reaction, a novel photoswitchable binding station with azobenzene as the photoswitchable unit and diketopiperazine as the binding station was synthesized and studied by NMR and UV/Vis spectroscopy. Glass surfaces have been functionalized with pyridine‐terminated SAMs and subsequently with multilayers of macrocycles through layer‐by‐layer self assembly. A preferred orientation of the macrocycles could be confirmed by NEXAFS spectroscopy. The photocontrolled deposition of the axle into the surface‐bound macrocycle‐multilayers was monitored by UV/Vis spectroscopy and led to an increase of the molecular order, as indicated by more substantial linear dichroism effects in angle‐resolved NEXAFS spectra.  相似文献   

15.
The tight binding enabled by tailor-made macrocycles can be manipulated for tuning the catalysis process. In parallel to well-developed crown ether-based cation-binding catalysis, a macrocycle-enabled counteranion trapping strategy is presented for boosting highly efficient and enantioselective catalysis. A set of bis-diarylthiourea macrocycles containing two BINOL moieties were designed and synthesized. They possess a well-confined chiral cavity and strong binding affinities towards disulfonate anions. Caused by the tight binding, just 1 mol % macrocycle in combination with 1 mol % ethanedisulfonic acid can promote excellent conversion and up to 99 % ee in the Friedel–Crafts reaction of indoles with imines. The acid or the macrocycle alone do not afford any reactivity. The high catalytic efficiency and excellent stereocontrol was ascribed to large, complexation-induced acidity enhancement and tight ion-pairing facilitated by cave-like macrocyclic cavity.  相似文献   

16.
A new series of tetrapyrazolic macrocycles with a functionalized sidearm has been prepared. Their capability to transport Li+ salts of carboxylic acids has been examined and is shown to be strongly dependent on the functionality of the macrocycle sidearm. In the case of the Li+ (D, L.)-mandelate, chiral recognition has been observed.  相似文献   

17.
Tartaric acid dihydrazides with acetal protected hydroxy groups react with terephthalaldehyde to preferentially form [2+2] bisacylhydrazone macrocycles. The structures of these macrocycles display all anti N–N and CN bonds. Both trans- and cis-C(O)–NH bonds are present in the macrocycle thus allowing the formation of a rather compact macrocyclic structure. The structures of the acylhydrazone macrocycle are shown to be different in the crystal and in the isolated molecule due to the structure determining role of water included in the crystal lattice: in the former all of the OC–C–H bonds are anti, while in the latter both syn- and anti-bonds are present. Both the non-planarity of the bisacylhydrazone molecules and their chiral interchromophoric interactions contribute to the rotatory power of the molecule. The low-temperature X-ray crystal structure of this compound provides direct evidence for hydrogen bonding between water and the aromatic π-electrons in the solid state.  相似文献   

18.
Tr?ger's base, a chiral molecule with a rigid 90 degrees backbone, has been incorporated into a novel hemilabile phosphinoalkyl thioether ligand. Using the Weak Link Approach, this ligand has been reacted with Cu(CH3CN)4PF6 and [Rh(COE)2Cl]x (COE = cyclooctene) to form metallomacrocycles. Upon reaction of the ligand with Cu(I), which prefers a tetrahedral coordination geometry, a bimetallic macrocycle was formed. Alternatively, owing to the steric restrictions imposed by the 90 degrees backbone of the ligand and the square-planar geometry of Rh(I), when the ligand was reacted with [Rh(COE)2Cl]x, the formation of bimetallic closed macrocycles was not observed, and instead a mixture of tri- and tetrametallic closed macrocycles is formed. Introducing pyridine to the Cu(I) complex causes the weak thioether-Cu bonds to break, generating a large bimetallic open macrocycle. Upon reaction of the mixture of Rh(I) metallomacrocycles with CO and Cl-, the cyclic structure of these complexes becomes flexible enough that the dimeric bimetallic macrocycle forms, along with tri- and tetrameric open complexes. The mixture of differently sized Rh(I) macrocyclic complexes has been analyzed using gel permeation chromatography, and the tetramer has been characterized by a single-crystal X-ray diffraction study. These are the first examples of metallomacrocycles containing a Tr?ger's base derivative.  相似文献   

19.
Chiral hexaazamacrocycles with a trianglamine structure and C(3)-symmetry, containing six ring substituents and twelve stereocenters have been tested as chiral solvating agents (CSAs) for α-substituted carboxylic acids. Excellent results have been obtained with a hexaphenyl-substituted macrocycle. The optimal ratio between the macrocycle and racemic acid, allowing for baseline separation of the enantiomers' signals in the (1)H NMR spectrum, was dependent on the type of acid, in particular on its degree of acidity. The analyte and the CSA could be separated and recovered by a simple acid-base extraction and reused without purification. The conformations of the free and protonated hexaamino macrocycles were inferred by CD spectroscopic studies and DFT calculations.  相似文献   

20.
The hydrogen-bond-directed synthesis, X-ray crystal structures, and optical properties of the first chiral peptide rotaxanes are reported. Collectively these systems provide the first examples of single molecular species where the expression of chirality in the form of a circular dichroism (CD) response can selectively be switched "on" or "off", and its magnitude altered, through controlling the interactions between mechanically interlocked submolecular components. The switching is achievable both thermally and through changes in the nature of the environment. Peptido[2]rotaxanes consisting of an intrinsically achiral benzylic amide macrocycle locked onto various chiral dipeptide (Gly-L-Ala, Gly-L-Leu, Gly-L-Met, Gly-L-Phe, and Gly-L-Pro) threads exhibit strong (10-20k deg cm(2) dmol(-1)) negative induced CD (theta;) values in nonpolar solvents (e.g. CHCl(3)), where the intramolecular hydrogen bonding between thread and macrocycle is maximized. In polar solvents (e.g., MeOH), where the intercomponent hydrogen bonding is weakened, or switched off completely, the elliptical polarization falls close to zero in some cases and can even be switched to large positive values in others. Importantly, the mechanism of generating the switchable CD response in the chiral peptide rotaxanes is also determined: a combination of semiempirical calculations and geometrical modeling using the continuous chirality measure (CCM) shows that the chirality is transmitted from the amino acid asymmetric center on the thread via the macrocycle to the C-terminal stopper of the rotaxane. This understanding could have important implications for other areas where chiral transmission from one chemical entity to another underpins a physical or chemical response, such as the seeding of supertwisted nematic liquid crystalline phases or asymmetric synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号