首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The main feature of counter-current chromatography (CCC) is that the stationary phase is a liquid as well as the mobile phase. The retention volumes of solutes are directly proportional to their distribution coefficients K(D) in the biphasic liquid system used in the CCC column. Solutes with high K(D) coefficients are highly retained in the column. The back-extrusion method (BECCC) uses the fact that the liquid stationary phase, that contains the retained solutes, can be easily moved. Switching the column inlet and outlet ports without changing the liquid phase used as the mobile phase causes the rapid collapse of the two immiscible liquid phases inside the column, the previously stationary phase being gathered at the new column outlet. Then this previously stationary liquid phase is extruded outside the CCC column carrying the retained solutes. The back-extrusion method is tested with a standard mixture of five compounds and compared with the recently described elution-extrusion method. It is shown that the chromatographic resolution obtained during the back-extrusion step is good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. However, a major drawback of the BECCC method is that all solutes are split between the liquid phases according to their distribution ratios when the CCC column equilibrium is broken. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode, eluting solutes with small and medium distribution ratios. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column and produce a broad peak showing after the stationary phase extrusion.  相似文献   

2.
The need for faster and more efficient separations of complex mixtures of organic compounds by gas chromatography has led to the development of small inner diameter open tubular columns. Owing to their decreased plate height, extremely narrow peaks are obtained. When differently sized columns with equal plate numbers are compared, injection of a fixed amount of a solute will give the highest detector signals for the smallest bore columns. When P is defined as the ratio of the column inlet and outlet pressures, it can be seen from theory that under normalized chromatographic conditions the minimum detectable amount (Qº) for a mass flow sensitive detector increases proportionally to the square of the column diameter for P = 1. In the situation of greater interest in the practice of open tubular gas chromatography where P is large, a linear relationship is derived between Qº and the column diameter. It is a widespread misunderstanding, however, that narrow bore capillary columns should be used for this reason in trace analysis. If a fixed relative contribution of the injection band width to the overall peak variance is allowed, a decreased plate height drastically restricts the maximum sample volume to be injected. It is shown that the minimum analyte concentration in the injected sample (Cº) is inversely proportional to the column inner diameter when a mass flow sensitive detector is used. For actual concentrations less than Cº, sample preconcentration is required. The effect of peak resolution and selectivity of the stationary phase in relation to Cº and Qº will be discussed as well. The validity of the given theory is experimentally investigated. Minimum analyte concentrations and minimum detectable amounts are compared using columns with different inner diameter.  相似文献   

3.
Significant peak width reductions, or peak height enhancements, of angiotensins were observed when a high voltage was applied to hydrophilic interaction pressurized capillary electrochromatography using gradient elution with mobile phases containing perchloric acid. The investigation using a contactless conductivity detector revealed that perchloric acid was adsorbed on the surface of the stationary phase, when the acetonitrile content in the mobile phase was high, and released from the stationary phase by increasing the water content during a gradient procedure. The released perchloric acid formed a highly concentrated zone moving from the column inlet to the outlet. The electrochromatographic behavior of the analytes, primarily electrophoretic migration, was changed in this zone. As a consequence of the significant variation in migration velocity of the analytes, the sample band width was reduced similar fashion to on‐capillary concentration in capillary electrophoresis. Using this result, the reduction of band width and enhancement in separation efficiency was demonstrated in reversed‐phase pressurized electrochromatography, in which the conductivity of the mobile phase was significantly altered using a step gradient. The resolution between benzoic acid and 1‐naphthalene sulfonic acid was successfully improved from 2.7 to 4.3 by using the band width reduction method based on field‐amplified stacking.  相似文献   

4.
Conventional models of both packed-bed and stacked-membrane chromatography typically attribute elution band broadening to non-idealities within the column. However, when the column length to diameter ratio is greatly reduced, as in stacked-membrane chromatography, variations in solute residence times within the feed-distribution (inlet) and eluent-collection (outlet) manifolds can also contribute to band broadening. We report on a new zonal rate model (ZRM) for stacked-membrane chromatography that improves on existing hold-up volume models that rely on one plug-flow reactor and one stirred-tank reactor in series to describe dispersion of solute during transport into and out of the column. The ZRM radially partitions the membrane stack and the hold-up volumes within the inlet and outlet manifolds into zones to better capture non-uniform flow distribution effects associated with the large column diameter to height ratio. Breakthrough curves from a scaled-down anion-exchange membrane chromatography module using ovalbumin as a model protein were collected at flow rates ranging from 1.5 to 20 mL min(-1) under non-binding conditions and used to evaluate the ZRM as well as previous models. The ZRM was shown to be significantly more accurate in describing protein dispersion and breakthrough. The model was then used to decompose breakthrough data, where it was found that variations in solute residence time distributions within the inlet and outlet manifolds make the dominant contribution to solute dispersion over the recommended range of feed flow rates. The ZRM therefore identifies manifold design as a critical contributor to separation quality within stacked-membrane chromatography units.  相似文献   

5.
An automated method is described for the routine determination of 3′-azido-2′,3′-dideoxythymidine (AZT), the best known drug against acquired immunodeficiency syndrome (AIDS). The method is based on on-line dialysis to remove matrix macromolecules, followed by selective preconcentration and clean-up with a silver(I)-thiol stationary phase. After desorption of the solute with a small plug of perchloric acid, chromatography is applied using an octadecyl-modified silica column. Using UV absorbance detection at 269 nm, the minimum detectable concentration in plasma is 20 ng ml?1 (600-μl sample). The within-day reproducibility at the 20 ng ml?1 level is 4.4% and at least 128 samples can be analysed unattendedly without exchanging the dialysis membrane, the precolumn or the analytical column.  相似文献   

6.
The stationary-phase capacity concepts derived from linear capacity are discussed in connection with the needs of analytical, trace enrichment analysis and preparative chromatography and shown to be unsuited to them. A new concept based on stationary-phase saturation and called “available capacity” is proposed. It generalizes the ion-exchanger exchange capacity to adsorption and partition chromatography when the sampling solvent is the mobile phase. In linear elution chromatography the available capacity is proportional to the solute concentration Co and to the analytical capacity factor k′ for given Co and k′ values, it is independent of the nature of the solute. Furthermore, when both the concentrations and the analytical capacity factors (practically, for Co ≥ 1 M and k′ ≥ 10, respectively) are high, the available capacity reaches a value roughly independent of Co and k′, called “maximum available capacity” and related only to the number of sites available on the stationary phase. Numerous measurements were made in ion-exchange, adsorption, and reversed-phase chromatography. For solutes having a single polar functional group interacting with the stationary phase, the orders of magnitude of the maximum available capacity are 1.2 mmole g?1 for a classical silica gel (Partisil 5 μm, 400m?2 g?1 with a water content of 2.7%); 1.8 mmole g?1 for the Lichroprep RP 8 octyl bonded silica (11.6% carbon content); 3.8 mmole g?1 for an anion exchanger resin of Dowex type.  相似文献   

7.
The overloaded band profiles of the protonated species of propranolol and amitriptyline were recorded under acidic conditions on four classes of stationary phases including a conventional silica/organic hybrid material in reversed‐phase liquid chromatography mode (BEH‐C18), an electrostatic repulsion reversed‐phase liquid chromatography C18 column (BEH‐C18+), a poly(styrene‐divinylbenzene) monolithic column, and a hydrophilic interaction chromatography stationary phase (underivatized BEH). The same amounts of protonated bases per unit volume of stationary phase were injected in each column (16, 47, and 141 μg/cm3). The performance of the propranolol/amitriptyline purification was assessed on the basis of the asymmetry of the recorded band profiles and on the selectivity factor achieved. The results show that the separation performed under reversed‐phase liquid chromatography like conditions (with BEH‐C18, BEH‐C18+, and polymer monolith materials) provide the largest selectivity factors due to the difference in the hydrophobic character of the two compounds. However, they also provide the most distorted overloaded band profiles due to a too small loading capacity. Remarkably, symmetric band profiles were observed with the hydrophilic interaction chromatography column. The larger loading capacity of the hydrophilic interaction chromatography column is due to the accumulation of the protonated bases into the diffuse water layer formed at the surface of the polar adsorbent. This work encourages purifying ionizable compounds on hydrophilic interaction chromatography columns rather than on reversed‐phase liquid chromatography columns.  相似文献   

8.
Dispersion in chromatographic processes can be reduced to a minimum using converging columns and a curved frit at the outlet. Working at constant pressure at the inlet the internal packing is increasingly compressed by the accelerated flow. Thus the packed bed is stabilized. Under these conditions the observed flux at the outlet and the power input of the pump are inversely related to the viscosity of the eluting solute. Comparing converging flow chromatography (CFC) with classical axial flow chromatography (AFC) and radial flow chromatography (RFC) the stationary phase is used more efficiently in CFC.  相似文献   

9.
锥型与圆柱型液相色谱制备柱的比较研究   总被引:3,自引:0,他引:3  
马继平  陈令新  谭峰  关亚风 《分析化学》2003,31(11):1317-1321
用可视化柱上图形分析对入口内径大于出口内径的锥型液相色谱制备柱的样品谱带流型进行了研究。在一定的实验条件下,锥型柱与圆柱型柱的流动相流型曲线相反。对与锥型柱有相同长度、相同容积的圆柱型色谱柱的柱效、样品容量及峰高的比较研究表明:锥型柱优于圆柱型柱。锥型柱的样品容量约为圆柱型柱的2倍,柱效比圆柱型的高36%,色谱流出曲线峰值高于圆柱型柱12%。  相似文献   

10.
Summary Phase soaking is a solvent effect which tends to reconcentrate peaks eluted after and to broaden peaks eluted before the solvent. The principles of the phase soaking effect on peaks eluted before the solvent are discussed. The broadening effect is distinguished from the broadening effect occurring in the flooded column inlet by partial solvent trapping. It was found that in most cases broadening by partial solvent trapping strongly predominated over broadening by phase soaking. Phase soaking was noticeable only in the neighbourhood of the solvent peak.Phase soaking does not broaden peaks eluted before the solvent as much as it re-concentrates those eluted after it. The two phase soaking effects on the front and the rear of the solvent band (that is, of the soaked zone) differ strongly from each other.Peak broadening by phase soaking is negligible for non-trapped components, because such solutes start their chromatography before a significant quantity of solvent enters the column. Phase soaking only broadens solute bands which were retained by the solvent in the column inlet, that is, bands already broadened by partial solvent trapping.  相似文献   

11.
非理想状态下的塔板理论模型   总被引:3,自引:0,他引:3  
王少坤  夏芸  汪圣利 《色谱》2002,20(1):30-33
 在过程中 ,将流动相看成是由许多连续的塔板组成 ,每一塔板的高度与固定相塔板的高度相同。初始浓度的溶质被认为全部集中在流动相的第一塔板中 ;溶质在流动相和固定相之间动态分布。由于动力学因素的影响 ,当流动相流过一个塔板距离时 ,溶质不能够迅速地从固定相释放到流动相中 ,因此溶质在流动相和固定相中的分布浓度受到两个因素即反映系统热力学性质的分配系数P和反映系统动力学性质的释放概率因子α的影响。这一过程被认为是非理想状态下的过程。  相似文献   

12.
Band broadening inside chromatographic columns was studied by Giddings 40 years ago. This theory is revisited pointing out that the band width depends only on the band position, x, inside the column and the height equivalent to a theoretical plate, H, and not on the solute affinity for the stationary phase. The band standard deviation, sigma, inside the column is simply sigma = square root [xH]. This property can be used in countercurrent chromatography (CCC), a chromatographic technique that works with a liquid stationary phase. Two possibilities are presented: 1-extrusion of the liquid stationary phase called elution-extrusion method, and 2-slow motion of the stationary phase in the same direction as the mobile phase, called cocurrent CCC method. A mixture of five steroids, prednisone, prednisolone acetate, testosterone, estrone and cholesterol, with partition coefficient varying from 0.1 to 40, is used with a 53 mL CCC column to show the method capabilities. The elution-extrusion method is discontinuous; however, it allows saving dramatic amounts of solvent and time. Cholesterol could be fully resolved in 2h and 120 mL instead of 7 h and 1.2 L using the classical elution way. The cocurrent CCC method is continuous and was able to resolve cholesterol at baseline in 40 min using 110 mL. Detection is difficult due to the fact that two immiscible liquid phases enter the detector.  相似文献   

13.
Surface area exclusion chromatography was used to investigate the reconformation of fully hydrolyzed polyvinylamine. The polymer is adsorbed on stacked glass fiber filters constituting the stationary phase while the polymer solution is injected at the inlet of the chromatography column. From numerical simulation and experimental chromatograms of nonreconforming polyelectrolytes, the amount of polymer adsorbed per filter represented as a function of the filter position along the column (the histogram) was determined to be continuously decreasing and not to depend on the rate of elution. For polyvinylamine, the histograms are peaked and the height of the peak was determined to depend greatly on the rate of polymer supply to the column that was controlled by monitoring the polymer concentration and/or the rate of elution (mass-transfer-controlled adsorption). Modifications in the adsorption on the successive filters were converted into changes in the interfacial area of adsorbed molecules taking into account model histograms as well as experimental adsorption histograms of non reconforming systems. Macromolecule concentration in the mobile phase and contact time between solute and adsorbed molecules were determined to be the two parameters controlling the extent of polymer desorption. The unusual shape of the histogram thus was attributed to reconformation of the adsorbed polymer, which was stimulated by interfacial exchange between segments belonging to trains of adsorbed macromolecules and chain segments of solute ones.  相似文献   

14.
The dynamic mathematical model of Grimes and Liapis [J. Colloid Interf. Sci. 234 (2001) 223] for capillary electrochromatography (CEC) systems operated under frontal chromatography conditions is extended to accommodate conditions in CEC systems where a positively charged analyte is introduced into a packed capillary column by a pulse injection (analytical mode of operation) in order to determine quantitatively the electroosmotic velocity, electrostatic potential and concentration profiles of the charged species in the double layer and in the electroneutral core region of the fluid in the interstitial channels for bulk flow in the packed chromatographic column as the adsorbate adsorbs onto the negatively charged fixed sites on the surface of the non-porous particles packed in the chromatographic column. Furthermore, certain key parameters are identified for both the frontal and analytical operational modes that characterize the performance of CEC systems. The results obtained from model simulations for CEC systems employing the analytical mode of operation indicate that: (a) for a given mobile liquid phase, the charged particles should have the smallest diameter, d(p), possible that still provides conditions for a plug-flow electroosmotic velocity field in the interstitial channels for bulk flow and a large negative surface charge density, deltao, in order to prevent overloading conditions; (b) sharp, highly resolute adsorption zones can be obtained when the value of the parameter gamma2min, which represents the ratio of the electroosmotic velocity of the mobile liquid phase under unretained conditions to the electrophoretic velocity of the anions (0>gamma2.min>-1), is very close to negative one, but the rate at which the solute band propagates through the column is slow; furthermore, as the solute band propagates across larger axial lengths, the desorption zone becomes more dispersed relative to the adsorption zone especially when the value of the parameter gamma2,max, which represents the ratio of the electroosmotic velocity of the mobile liquid phase under retained conditions to the electrophoretic velocity of the anions (0>gamma2,max>-1), is significantly greater than gamma2,min; (c) when the value of the equilibrium adsorption constant, K(A),3, is low, very sharp, highly resolved adsorption and desorption zones of the solute band can be obtained as well as fast rates of propagation of the solute band through the column; (d) sharp adsorption zones and fast propagation of the solute band can be obtained if the value of the mobility, v3, of the analyte is high and the value of the ratio v1/v3, where v1 represents the mobility of the cation, is low; however, if the magnitude of the mobility, v3, of the analyte is small, dispersed desorption zones are obtained with slower rates of propagation of the solute band through the column; (e) good separation of analyte molecules having similar mobilities and different adsorption affinities can be obtained in short operational times with a very small column length, L, and the resolution can be increased by providing values of gamma2,min and gamma2,max that are very close to negative one; and (f) the change in the magnitude of the axial current density, i(x), across the solute band could serve as a measurement for the rate of propagation of the solute band.  相似文献   

15.
《Analytical letters》2012,45(7):1451-1461
Abstract

Cellulose and cellulose derivatives are biopolymers that are often used as stationary phases for the separation of enantiomers. Describing the mechanism of such separations is a difficult task due to the complexity of these phases. In the present study, direct enantiomeric resolution of ethofumesate has been achieved, using hexane as the mobile phase with various alcoholic modifiers on cellulose tri(3,5‐dimethylphenylcarbamate) chiral stationary phase (CDMPC CSP). The influence of the mobile phase composition and the column temperature on the chiral separation was studied. It was found that at a constant temperature and within a certain range of alcohol modifier concentration, the conformation of the polymeric phase, and the selective adsorption sites were not affected by alcohol modifier concentration. The type and the concentration of the alcoholic modifiers influenced the retention factor and the separation factor. Ethofumesate gained the best enantioseparation using sec‐butanol as alcoholic modifier at 25°C with α‐value 1.70. And the separation factor decreased with the increase of the column temperature. The van't Hoff plots were linear (R 2>0.96) for ethofumesate from 25°C to 50°C. That showed the enantioselective interactions do not change over the temperature range studied. Furthermore the values of ΔH° and ΔS° were both negative, which indicated an enthalpy‐driven separation. And the possible chiral recognition mechanism of the analyte and CDMPC was discussed. It was found that hydrogen bonding plays an important role on enantioseparation of CDMPC CSP. The inclusion and fitness of solute shape in the chiral cavity significantly contributed to the enantioseparation of solute.  相似文献   

16.
Summary Particle size distribution analysis and scanning electron microscopy (SEM) were carried out on eight used HPLC columns containing either irregular silica based, spherical silica based or spherical polymer based packing material. Particle size distributions of the used irregular silica based columns were at least bimodat at the outlet ends and either biomodal or log-normal at the inlet ends with regular progressions between the two extremes through the column. A new ODS-3 column showed log-normal size distributions from the inlet to the outlet ends. Spherical silica based column particle size distributions showed distinct shoulders on large central distribution peaks in most column sections with various degrees of shoulder erosion. The spherical resin based column showed a broader inlet particle size distribution progressing to a very narrow outlet distribution. SEMs of both irregular and spherical silica based columns revealed a larger number of undersized particles and debris at the outlet than inlet ends which could have resulted from stationary phase degradation, since this was not seen in the new ODS-3 column. While several SEMs of the spherical silica based columns revealed hollow spheres and twins, the spherical resin based column packing showed stress fractures or wrinkle lines resulting from use or dehydration.Presented in part as a poster at the HPLC '92, 16th Symposium on CLC, Baltimore, MD, USA.  相似文献   

17.
18.
In this work, we consider an alternative approach for the measurement of adsorption from the liquid phase. Consider a mixture consisting of a non-adsorbed component (B) and an adsorbed component (A) present at some low concentration. Initially, a feed of component B only flows through a column packed with an adsorbent. Then, the feed is switched to the mixture of A and B. As soon as the mixture enters the column, there will be a reduction in the outlet flow rate as component A leaves the liquid phase and passes into the adsorbed phase. There are three stages to this work. The first is to develop overall and component balances to show how the amount adsorbed of component A can be determined from the variation in the column outlet flow rate. The second is to determine the actual variation in the column outlet flow rate for both plug flow and axial-dispersed plug flow. The final stage is to consider the suitability of a gravity-fed system to deliver the feed to the column. An analysis of the results shows that the experimental arrangement should be able to accurately monitor adsorption from the liquid phase where the mass fraction of the solute is of the order of 1%: the limiting experimental factor is how constant the volumetric flow rate of the liquid feed can be maintained.  相似文献   

19.
使用塔板理论证明存在一种使正常色谱峰产生拖尾的因素-柱出口效应。证明符合线性分配的样品组分虽然在色谱内存在3种不同浓度的分布形态,但在流出色谱后却都因柱出口效应的影响而转变成拖尾峰。在不加任何近似处理的情况下,使用塔板理论直接对不同塔板数、容量因子的色谱峰不对称性进行了计算;计算结果同样支持了柱出口效应的存在。  相似文献   

20.
Summary The chiral recgonition mechanism for a series of phenoxypropionic acid herbicides was investigated in reversed phase liquid chromatography (RPLC) on a teicoplanin stationary phase over a wide range of column temperatures. Thermodynamic constants, of the transfer of an enantiomer from the mobile to the teicoplanin stationary phases were determined. The van't Hoff plots for all solutes had a break at a critical temperature T* showing a variation in the enantiomer retention mechanism due to a change in the conformational state of the teicoplanin, structure. Additionally, enthalpy-entropy compensation confirmed both the change in enantiomer interaction mechanism observed for regions T<T* and T>T* and the independence of this mechanism from (i) herbicide molecular structure,s i.e. the position of the chloro group on the phenol ring and (ii) the carbon absolute configuration. Moreover, the increasing enantioselectivity with increasing methanol fraction in the mobile phase was attributed to restriction of the solute association in the teicoplain, stationary phase, leading to favorable stereoselective interactions. This behavior was used to optimize chromatographic conditions for separation of herbicide enantiomers on teicoplanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号