首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelativistic counterpart, which needs to be compared to the by a factor of 32 higher cost for fully relativistic schemes and schemes with spin-orbit coupling included already at the Hartree-Fock self-consistent field (HF-SCF) level. This substantial computational saving is due to the use of real molecular orbitals and real two-electron integrals. Results on 5p-, 6p-, and 7p-block element compounds show that the bond lengths and harmonic frequencies obtained with the present two-component CCSD method agree well with those computed with the CCSD approach including spin-orbit coupling at the HF-SCF level even for the 7p-block element compounds. As for the CCSD(T) approach, high accuracy for 5p- and 6p-block element compounds is retained. However, the difference in bond lengths and harmonic frequencies becomes somewhat more pronounced for the 7p-block element compounds.  相似文献   

2.
Magnetically induced current densities in the four-membered rings of Al4(2-) and Al4(4-) species have been calculated at the coupled-cluster singles and doubles (CCSD) level by applying the recently developed gauge-including magnetically induced current (GIMIC) method. The strength of the ring-current susceptibilities were obtained by numerical integration of the current densities passing through a cross section perpendicular to the Al4 ring. The GIMIC calculations support the earlier notion that Al4 (2-) with formally two pi electrons sustains a net diatropic ring current. The diatropic contribution to the ring-current susceptibility is carried by the electrons in both the sigma (16.7 nAT) and the pi (11.3 nAT) orbitals. The induced ring current in the Al4 (4-) compounds, with four pi electrons, consists of about equally strong diatropic sigma and paratropic pi currents of about 14 and -17 nAT, respectively. The net current susceptibilities obtained for Al4Li-, Al4Li2, Al4Li3(-), and Al4Li4 at the CCSD level using a triple-zeta basis set augmented with polarization functions are 28.1, 28.1, -5.9, and -3.1 nAT, respectively. The corresponding diatropic (paratropic) contributions to the ring-current susceptibilities are 32.4 (0.0), 36.7 (0.0), 18.9 (-19.9), and 18.6 (-16.8) nAT, respectively. For the Al4(2-) and Al4(4-) species, the net currents circling each Li+ cation is estimated to 4.3 and 2.4 nAT, respectively.  相似文献   

3.
The first excited state (S1) intermolecular potential energy surface for the p-difluorobenzene-Ar van der Waals complex is evaluated using the coupled-cluster method and the augmented correlation consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. In order to calculate the S1 interaction energies we use the ground state surface evaluated with the same basis set and the coupled-cluster singles and doubles [CCSD] including connected triple excitations [CCSD(T)] model, and interaction and excitation energies evaluated at the CCSD level. The surface minima are characterized by the Ar atom located above and below the p-difluorobenzene center of mass at a distance of 3.4736 A. The corresponding interaction energy is -435.233 cm-1. The surface is used in the evaluation of the intermolecular level structure of the complex.  相似文献   

4.
Unrestricted Hartree-Fock, coupled-cluster calculations are reported for the ground state of NeH+ using atomic basis sets of increasing size and accuracy for both Ne and H. The goal is to determine the basis set and coupled-cluster level of calculation needed to obtain a NeH+ potential energy curve of known accuracy. Here, it is shown that calculations using a quintuple zeta basis at the coupled-cluster singles and doubles level with noniterative triples, CCSD(T) , predict a Ne—H bond dissociation energy that is within about 0.01 eV of the exact Born–Oppenheimer molecular electronic structure result. Spectroscopic constants determined using the Simons–Parr–Finlan procedure are found to be in very good agreement with the experimental results. Calculations at the augmented quadruple zeta level for the two lowest triplet excited states of the NeH+ species are presented. Both of these states separate into ground-state Ne+ and H(1s). The resulting potential curves predict stable minima at the SCF, CCSD, and CCSD(T) levels with dissociation energies of about 0.07 eV. Spectroscopic constants from the potential curves and dissociation constants are reported. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The recently developed reduced multireference coupled-cluster method with singles and doubles (RMR CCSD) that is perturtatively corrected for triples [RMR CCSD(T)] is employed to compute the forward and reverse barrier heights for 19 non-hydrogen-transfer reactions. The method represents an extension of the conventional single-reference (SR) CCSD(T) method to multireference situations. The results are compared with a benchmark database, which is essentially based on the SR CCSD(T) results. With the exception of seven cases, the RMR CCSD(T) results are almost identical with those based on SR CCSD(T), implying the abatement of MR effects at the SD(T) level relative to the SD level. Using the differences between the RMR CCSD(T) and CCSD(T) barrier heights as a measure of MR effects, modified values for barrier heights of studied reactions are given.  相似文献   

6.
While the experimental (1)H NMR chemical shiftsof the 1-adamantyl cation can be computed within reasonably small error bounds, the usual Hartree-Fock and density functional quantum-chemical computations, as well as those based on rather elaborate second-order M?ller-Plesset perturbation theory, fail to reproduce its experimental (13)C NMR chemical shifts satisfactorily. This also is true even if the NMR shielding calculations treat electron correlation adequately by the coupled-cluster singles and doubles model augmented by a perturbative correction for triple excitations (i.e., at the CCSD(T) level) with quadruple-ζ basis sets. We demonstrate that good agreement can be achieved if highly accurate 1-adamantyl cation equilibrium geometries based on parallel computations of CCSD(T) gradients are employed for the NMR shielding computations.  相似文献   

7.
Using the analytic derivatives approach, dipole moments of high-level density-fitted coupled-cluster (CC) methods, such as coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)], are presented. To obtain the high accuracy results, the computed dipole moments are extrapolated to the complete basis set (CBS) limits applying focal-point approximations. Dipole moments of the CC methods considered are compared with the experimental gas-phase values, as well as with the common DFT functionals, such as B3LYP, BP86, M06-2X, and BLYP. For all test sets considered, the CCSD(T) method provides substantial improvements over Hartree–Fock (HF), by 0.076–0.213 D, and its mean absolute errors are lower than 0.06 D. Furthermore, our results indicate that even though the performances of the common DFT functionals considered are significantly better than that of HF, their results are not comparable with the CC methods. Our results demonstrate that the CCSD(T)/CBS level of theory provides highly-accurate dipole moments, and its quality approaching the experimental results. © 2019 Wiley Periodicals, Inc.  相似文献   

8.
A new method is presented for treating the effects of quadruple excitations in coupled-cluster theory. In the approach, quadruple excitation contributions are computed from a formula based on a non-Hermitian perturbation theory analogous to that used previously to justify the usual noniterative triples correction used in the coupled cluster singles and doubles method with a perturbative treatment of the triple excitations (CCSD(T)). The method discussed in this paper plays a parallel role in improving energies obtained with the full coupled-cluster singles, doubles, and triples method (CCSDT) by adding a perturbative treatment of the quadruple excitations (CCSDT(Q)). The method is tested for an extensive set of examples, and is shown to provide total energies that compare favorably with those obtained with the full singles, doubles, triples, and quadruples (CCSDTQ) method.  相似文献   

9.
Large scale coupled-cluster benchmark calculations have been carried out to determine the barrier height of the F+H2 reaction as accurately as possible. The best estimates for the barrier height of the linear and bent transition states amount to 2.16 and 1.63 kcal/mol, respectively. These values include corrections for core correlation, scalar-relativistic effects, spin-orbit effects, as well as the diagonal Born-Oppenheimer correction. The CCSD(T) basis-set limits are estimated using extrapolation techniques with augmented quintuple and sextuple-zeta basis sets, and remaining N-electron errors are determined using coupled-cluster singles, doubles, triples, quadruples calculations with up to augmented quintuple-zeta basis sets. The remaining uncertainty is estimated to be less than 0.1 kcal/mol. The coupled-cluster results are used to calibrate multireference configuration-interaction calculations with empirical scaling of the correlation energy.  相似文献   

10.
《Chemical physics》2005,308(3):277-284
The ground state potential energy surface for He–F2 has been generated using the coupled-cluster singles and doubles excitation approach with perturbative treatment of triple excitations [CCSD(T)] and multi-reference configuration interaction (MRCI) methodologies, with augmented correlation consistent quadruple zeta basis set and diffused functions. Both the CCSD(T) and MRCI surfaces are compared and the results analyzed. The CCSD(T) surface exhibits van der Waals minima at different distances for different orientations of He approaching F2 and is adequate to describe accurately only in the region around the equilibrium bond distance of F2. The MRCI surface, on the other hand, yields reliable results for a wider range of F–F bond distances leading to the correct asymptote. Davidson correction to the MRCI surface makes it purely repulsive over the regions investigated.  相似文献   

11.
The CH4 + HO2(*) reaction is studied by using explicitly correlated coupled-cluster theory with singles and doubles (CCSD-R12) in a large 19s14p8d6f4g3h basis (9s6p4d3f for H) to approach the basis-set limit at the coupled-cluster singles-doubles level. A correction for connected triple excitations is obtained from the conventional CCSD(T) coupled-cluster approach in the correlation-consistent quintuple-zeta basis (cc-pV5Z). The highly accurate results for the methane reaction are used to calibrate the calculations of the hydroperoxyl-radical hydrogen abstraction from other alkanes. For the alkanes C(n)H(2n+2) with n = 2 --> 4, the reactions are investigated at the CCSD(T) level in the correlation-consistent triple-zeta (cc-pVTZ) basis. The results are adjusted to the benchmark methane reaction and compared with those from other approaches that are commonly used in the field such as CBS-QB3, CBS-APNO, and density functional theory. Rate constants are computed in the framework of transition state theory, and the results are compared with previous values available.  相似文献   

12.
The recently developed reduced multireference coupled-cluster method with singles and doubles (RMR CCSD), which is perturbatively corrected for triples [RMR CCSD(T)], is employed to compute binding energies of nine transition metal ions with CH2. Unlike analogous compounds involving main-group elements, the MCH2+ (M=Sc to Cu) transition metal complexes often exhibit a non-negligible multireference character. The authors thus employ the RMR CCSD(T) method, which represents an extension of the standard single-reference (SR) CCSD(T) method and can account for multireference effects, while employing only small reference spaces. In this way the role of quasidegeneracy effects on the binding energies of these complexes can be assessed at a higher SD(T) level than is possible with the widely used ab initio methods, namely, with the standard SR CCSD(T) approach, and provide a new benchmark for these quantities. The difference between the RMR and the standard CCSD(T) methods becomes particularly evident when considering nonequilibrium geometries.  相似文献   

13.
14.
Ne-CO2的从头算势能面及微波光谱   总被引:1,自引:1,他引:0  
采用三重激发校正的耦合簇[CCSD(T)]方法和大基组计算了范德华复合物Ne-CO2的分子间势能面. 分子间相互作用能的计算采用考虑了基组重叠误差修正的超分子方法. 计算结果表明, 该势能面有两个极小值点, 分别对应T形构型和线性Ne-OCO构型. 采用离散变量表象(DVR)方法及Lanczos算法计算了Ne-CO2的振转能级. 计算结果表明, 体系势能面支持22个振动束缚态. 计算得到的微波光谱的跃迁频率与实验值吻合得很好.  相似文献   

15.
The explicitly-correlated coupled-cluster singles and doubles with perturbative triples method (CCSD(T)-F12) is implemented using the cusp conditions. Numerical tests for a set of 16 molecules have shown agreement of correlation energies within 1 mE(h) between the cusp-condition and fully-optimized CCSD(T)-F12 methods. Benchmark calculations on 13 chemical reactions with the cusp-condition CCSD(T)-F12 method reproduce experimental enthalpies within 2 kJ mol(-1). It is also shown that regular unitary-invariant ansatz cannot exactly satisfy singlet and triplet cusp conditions in open-shell situations. We present an extended ansatz which can handle both conditions exactly.  相似文献   

16.
17.
Phosphorus nitride (PN) is the simplest molecule formed solely by phosphorus and nitrogen. It represents an interesting model for materials, where phosphorus is directly attached to nitrogen. Nevertheless, both theoretical and experimental studies often provide an incomplete picture on the structural, electronic, and spectral properties of PN. Theoretical predictions often suffer from insufficient level of theory, incomplete basis set, or from neglecting several effects, for example, zero-point vibrational correction (ZPVC). Therefore, we performed an extensive benchmark study on structural, electronic, and spectral properties of PN at the Hartree-Fock, density functional theory (DFT), or even the coupled-cluster levels. We paid special attention to the basis set effect. We tested three variants of Dunning's aug-cc-pVXZ basis sets with the size from double-ζ to sextuple-ζ, as well as Jensen's aug-pc-n, aug-pcJ-n, and aug-pcSseg-n basis sets, where n = 1-4. Obtained energetics, PN distance, dipole moment, vibrational frequencies, and nuclear magnetic resonance (NMR) parameters were extrapolated to the complete basis set limit (CBS) using three- or two-parameter formulas. The 31P NMR shieldings estimated with the aug-cc-pVXZ and aug-cc-pV(X + d)Z basis sets strongly depend on the basis set size providing scattered convergence patterns toward CBS. The Hartree-Fock self-consistent field (HF-SCF) NMR parameters evinced similar behavior as the coupled-cluster data. The only smooth convergence was achieved using the aug-cc-pCVXZ basis sets that include core-valence effects. The KT3 functional underestimated the phosphorus CBS shieldings by about 12 ppm compared to coupled cluster with singles and doubles (CCSD) (T). Nevertheless, KT3 unambiguously surpasses the HF-SCF and CCSD levels that provide 31P shieldings that are lower by about 150 ppm and 24 ppm compared to CCSD(T). The convergence of nitrogen shieldings was regular for all basis set hierarchies and all theoretical methods. Relativistic and vibrational effects on selected properties were also discussed.  相似文献   

18.
To approach the complete basis set limit of the "gold-standard" coupled-cluster singles and doubles plus perturbative triples [CCSD(T)] method, we extend the recently proposed perturbative explicitly correlated coupled-cluster singles and doubles method, CCSD(2)(R12) [E. F. Valeev, Phys. Chem. Chem. Phys. 8, 106 (2008)], to account for the effect of connected three-electron correlations. The natural choice of the zeroth-order Hamiltonian produces a perturbation expansion with rigorously separable second-order energy corrections due to the explicitly correlated geminals and conventional triple and higher excitations. The resulting CCSD(T)(R12) energy is defined as a sum of the standard CCSD(T) energy and an amplitude-dependent geminal correction. The method is technically very simple: Its implementation requires no modification of the standard CCSD(T) program and the formal cost of the geminal correction is small. We investigate the performance of the open-shell version of the CCSD(T)(R12) method as a possible replacement of the standard complete-basis-set CCSD(T) energies in the high accuracy extrapolated ab initio thermochemistry model of Stanton et al. [J. Chem. Phys. 121, 11599 (2004)]. Correlation contributions to the heat of formation computed with the new method in an aug-cc-pCVXZ basis set have mean absolute basis set errors of 2.8 and 1.0 kJmol when X is T and Q, respectively. The corresponding errors of the standard CCSD(T) method are 9.1, 4.0, and 2.1 kJmol when X=T, Q, and 5. Simple two-point basis set extrapolations of standard CCSD(T) energies perform better than the explicitly correlated method for absolute correlation energies and atomization energies, but no such advantage found when computing heats of formation. A simple Schwenke-type two-point extrapolation of the CCSD(T)(R12)aug-cc-pCVXZ energies with X=T,Q yields the most accurate heats of formation found in this work, in error on average by 0.5 kJmol and at most by 1.7 kJmol.  相似文献   

19.
We report benchmark calculations obtained with our new coupled-cluster singles and doubles (CCSD) code for calculating the first- and second-order molecular properties. This code can be easily incorporated into combined [Valiev, M.; Kowalski, K. J. Chem. Phys. 2006, 125, 211101] classical molecular mechanics (MM) and ab initio coupled-cluster (CC) calculations using NWChem, enabling us to study molecular properties in a realistic environment. To test this methodology, we discuss the results of calculations of dipole moments and static polarizabilities for the Cl2O system in the CCl4 solution using the CCSD (CC with singles and doubles) linear response approach. We also discuss the application of the asymptotic extrapolation scheme (AES) [Kowalski, K.; Valiev, M. J. Phys. Chem. A 2006, 110, 13106] in reducing the numerical cost of CCSD calculations.  相似文献   

20.
A perturbatively truncated version of the reduced multireference coupled-cluster method with singles and doubles and noniterative triples RMR CCSD(T) is described. In the standard RMR CCSD method, the effect of all triples and quadruples that are singles or doubles relative to references spanning a chosen multireference (MR) model space is accounted for via the external corrections based on the MR CISD wave function. In the full version of RMR CCSD(T), the remaining triples are then handled via perturbative corrections as in the standard, single-reference (SR) CCSD(T) method. By using a perturbative threshold in the selection of MR CISD configuration space, we arrive at the truncated version of RMR CCSD(T), in which the dimension of the MR CISD problem is significantly reduced, thus leaving more triples to be treated perturbatively. This significantly reduces the computational cost. We illustrate this approach on the F2 molecule, in which case the computational cost of the truncated version of RMR CCSD(T) is only about 10%-20% higher than that of the standard CCSD(T), while still eliminating the failure of CCSD(T) in the bond breaking region of geometries. To demonstrate the capabilities of the method, we have also used it to examine the structure and binding energy of transition metal complexes Ni(CO)n with n=1, 2, and 4. In particular, Ni(CO)2 is shown to be bent rather than linear, as implied by some earlier studies. The RMR CCSD(T) binding energy differs from the SR CCSD(T) one by 1-2 kcal/mol, while the energy barrier separating the linear and bent structures of Ni(CO)2 is smaller than 1 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号