首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents an experimental study of the temperature dependences of the electrical resistivity, thermopower, and magnetoresistance of single-crystal manganite Pr1 ? x Sr x MnO3 (x = 0.22, 0.24). The results obtained have been analyzed in terms of the theory of hopping electrical conductivity of manganites in the phase-separation state and the main postulates of percolation theory. In the 2–400-K interval, hopping conductivity with temperature-dependent activation energy has been observed. Near the Curie temperature, the monotonic exponential growth of electrical resistivity with decreasing temperature becomes distorted by formation of finite metallic clusters. For T ≤ 36 K, the conductivity of Pr0.8Sr0.22MnO3 follows the Mott law.  相似文献   

2.
The influence of hydrogen on the magnetic structures in thulium was determined by measuring the temperature dependence of the electrical resistivity up to 75 K. The H acts by lowering the Neel temperature and the spin-disorder resistivity, by smearing out the manifestation of the Curie temperature, and by revealing additional magnetic transitions below TC. This behaviour and the observation of an energy gap in the spin-wave spectrum are commented within the framework of the RKKY-model.  相似文献   

3.
Electrical conductivity and magnetoresistance of a series of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets prepared by pyrophoric method have been reported. K doping increases the conductivity as well as the Curie temperature (TC) of the system. Curie temperature increases from 260 to 309 K with increasing K content. Above the metal-insulator transition temperature (T>TMI), the electrical resistivity is dominated by adiabatic polaronic model, while in the ferromagnetic region (50<T<TMI), the resistivity is governed by several electron scattering processes. Based on a scenario that the doped manganites consist of phase separated ferromagnetic metallic and paramagnetic insulating regions, all the features of the temperature variation of the resistivity between ∼50 and 300 K are described very well by a single expression. All the K doped samples clearly display the existence of strongly field dependent resistivity minimum close to ∼30 K. Charge carrier tunneling between antiferromagnetically coupled grains explains fairly well the resistivity minimum in monovalent (K) doped lanthanum manganites. Field dependence of magnetoresistance at various temperatures below TC is accounted fairly well by a phenomenological model based on spin polarized tunneling at the grain boundaries. The contributions from the intrinsic part arising from DE mechanism, as well as, the part originating from intergrannular spin polarized tunneling are also estimated.  相似文献   

4.
The experiments of electrical resistivity and thermopower on Nd0.75Sr1.25CoO4 film in the temperature range 90 K<T<310 K were carried out. The great difference in the activation energies estimated from thermopower and resistivity, a characteristic of small polarons, is observed, providing strong evidence for polaron-dominated transport mechanism in this material. Furthermore, the activation energy at intermediate-temperature region is larger than that at low-temperature region in resistivity, but it is not observed in thermopower, indicating that the energy for the creation of the carriers is slightly lower at low-temperature region than that at intermediate-temperature region. At the same time, the abrupt drop in the thermopower and the abnormal peak in the differential curve of resistivity indicate that a phase transition between a paramagnetic state and a ferromagnetic state occurs at temperature about 218 K. The positive thermopower in the whole temperature range measured suggests that the carriers are holes in this system.  相似文献   

5.
Nano-crystalline MnFe2−xAgxO4 (x = 0, 0.1, 0.2, 0.3 and 0.6) samples with average grain size of 4–7 nm were synthesized by a simple method based on decomposition of metal nitrates in presence of citric acid. The samples were characterized by different structural, magnetic and electrical measurements. Rietveld refinement of X-ray diffraction data confirmed cubic spinel structure of the samples. Results show that Ag doping decreases the crystallite size, magnetization and coercivity of nanoparticles. By increasing the Ag content in the samples the saturation magnetization shows interesting temperature dependent behavior. It was realized that magnetization of smaller particles show higher sensitivity to temperature variations than larger particles. DC electrical resistivity measurements in the temperature range of 300–650 K show that the resistivity first increases and then decreases by increasing the Ag content in the samples. Curie temperature (Tc) and polaron activation energy in ferromagnetic and paramagnetic regions were estimated by using resistivity curves.  相似文献   

6.
An experimental study of the temperature behavior of longitudinal sound velocity, internal friction, electrical resistivity, and thermopower of single-crystal La0.75Ba0.25MnO3 is reported. A structural transition accompanied by a large jump (18%) in the sound velocity was found to occur at T S ≈170 K. Within the interval 156–350 K, the temperature dependences of the sound velocity and internal friction reveal a temperature hysteresis. An internal-friction peak due to relaxation processes was detected. The metallic and semiconducting regions are separated by a transition domain about 80 K wide lying below the Curie temperature T C =300 K.  相似文献   

7.
The resistivity, magnetoresistance, thermopower, and magnetic susceptibility of La1?xAxMnO3(A≡Ca,Sr;x=0.07–0.1) single crystals are investigated in the temperature range from 77 to 400 K. Sharp changes in the properties (the resistivity activation energy ΔEρ, its temperature coefficient γ, the thermopower activation energy ΔE S , the magnetoresistance, and the appearance of spontaneous magnetization) of these crystals occur near a temperature of 275±25 K, which is approximately twice as high as their Curie point TC and approximately half of the structural transition temperature. The results are explained by the phase separation: the formation of ferromagnetic clusters. The phase separation occurs through the coalescence of small-radius unsaturated magnetic polarons, in which only two or three magnetic moments of Mn are polarized, into a large-radius ferromagnetic polaron (a cluster about 10–12 Å in size) with several charge carriers. As a result, the short-range order occurs in the cluster at a temperature of about 275 K, which is close to T C of conducting doped manganites. The results of the experimental studies of the resistivity and the magnetoresistance as functions of temperature and magnetic field and the estimates agree well with the cluster model.  相似文献   

8.
The temperature (T = 77–420 K) dependences of the electrical resistivity and the magnetization, the magnetic-field (H ≤ 5 kOe) and pressure (P ≤ 7 GPa) dependences of the resistivity, the Hall coefficient, and the magnetization have been measured in the Zn0.1Cd0.9GeAs2 + 10 wt % MnAs composite with the Curie temperature T C = 310 K. The magnetoresistive effect has been observed at high hydrostatic pressure to 7 GPa. At nearly room temperature, the pressure dependence of the magnetization demonstrated a transition from the ferromagnetic to paramagnetic state at P ~ 3.2 GPa that was accompanied by the semiconductor–metal phase transition.  相似文献   

9.
The electrical resistivity ρ(T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev’s Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ(T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ(T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ? T C).  相似文献   

10.
This paper reports on measurements of the acoustic, magnetic, and electrical properties and on an x-ray microprobe analysis of a La0.825Sr0.175MnO3 single-crystal sample. The acoustic studies were made with a pulsed acoustic spectrometer operating on a 770-MHz carrier. The studies revealed anomalies in the damping coefficients and sound velocity near 300, 200 K, and the Curie temperature TC (283 K) where the colossal magnetoresistance occurs. The effect of a magnetic field on the magnetic texture of lanthanum manganites cooled below TC, observed earlier in samples of other composition, is confirmed. In addition, a region was found wherein the magnetic susceptibility of an unclamped sample behaves anomalously. The electrical resistivity was observed to decrease substantially below TC; this effect exhibits a hysteretic pattern in the interval 200–180 K.  相似文献   

11.
The influence of the substitution of small amounts of Fe with Mo (0–10 at.%) in a Fe80B20 metallic glass on the Curie temperature, crystallization temperature and room temperature electrical resistivity is reported. A decrease in Curie temperature of approximately 40 K/at.% Mo is observed. The crystallization temperatures show a small increase with increasing Mo-content, and the room temperature electrical resistivity of the as quenched samples is essentially independent of the Mo-content (?am(295 K) ~ 128 μχ-cm).  相似文献   

12.
The compound Bi24(CoBi)O40 has been synthesized using the solid-phase reaction method. The temperature and field dependences of the magnetic moment in the temperature range 4 K < T < 300 K and the temperature dependences of the EPR line width and g-factor at temperatures 80 K < T < 300 K have been investigated. The electrical resistivity and thermoelectric power have been measured in the temperature range 100 K < T < 1000 K. The activation energy has been determined and the crossover of the thermoelectric power from the phonon mechanism to the electron mechanism with variations in the temperature has been observed. The thermal expansion coefficient of the samples has been measured in the temperature range 300 K < T < 1000 K and the qualitative agreement with the temperature behavior of the electrical resistivity has been achieved. The electrical and structural properties of the compound have been explained in the framework of the model of the electronic-structure transition with inclusion of the exchange and Coulomb interactions between electrons and the electron-phonon interaction.  相似文献   

13.
This paper reports on comparative investigations of the structural and electrical properties of biomorphic carbons prepared from natural beech wood, as well as medium-density and high-density fiberboards, by means of carbonization at different temperatures T carb in the range 650–1000°C. It has been demonstrated using X-ray diffraction analysis that biocarbons prepared from medium-density and high-density fiberboards at all temperatures T carb contain a nanocrystalline graphite component, namely, three-dimensional crystallites 11–14 Å in size. An increase in the carbonization temperature T carb to 1000°C leads to the appearance of a noticeable fraction of two-dimensional graphene particles with the same sizes. The temperature dependences of the electrical resistivity ρ of the biomorphic carbons have been measured and analyzed in the temperature range 1.8–300 K. For all types of carbons under investigation, an increase in the carbonization temperature T carb from 600 to 900°C leads to a change in the electrical resistivity at T = 300 K by five or six orders of magnitude. The dependences ρ(T) for these materials are adequately described by the Mott law for the variable-range hopping conduction. It has been revealed that the temperature dependence of the electrical resistivity exhibits a hysteresis, which has been attributed to thermomechanical stresses in an inhomogeneous structure of the biocarbon prepared at a low carbonization temperature T carb. The crossover to the conductivity characteristic of disordered metal systems is observed at T carb ? 1000°C.  相似文献   

14.
The a.c. permeability and the qualitative behaviour of the electrical resistivity of GdNi5 have been investigated near the Curie point (Tc). The electrical resistivity shows no unusual properties near Tc but the a.c. permeability exhibits a sharp peak superimposed on the usual relatively slow decay in the transition region. The peak in the susceptibility occurs at 31.8 K in zero external field and may be suppressed by the application of a magnetic field.  相似文献   

15.
The magnetotransport and magnetic properties of La 1 ? x Ca x MnO3 polycrystalline samples (x = 0–0.3) annealed under vacuum and in the oxygen environment are investigated in the temperature range from 77 to 400 K. The magnetic studies of lightly doped manganites reveal persistence of short-range magnetic order up to a temperature T* ≈ 300 K, which is about 2–3 times higher than their Curie temperature T C. The temperature dependence of the electrical resistivity measured from T* down to nearly TT C is fitted by the relation logρ ~ T ?1/2, which is characteristic of granular metals with electrons tunneling among nanoclusters of magnetic metals embedded in a dielectric host. The magnetoresistance of polycrystalline samples annealed in the oxygen environment has been observed to increase. The electrical, magnetic, and magnetotransport properties of the manganites can be accounted for by the formation of magnetic nanoclusters below T*, tunneling (or hopping) of carriers among the nanoclusters, variation in the magnetic cluster size, and tunneling barrier thickness with variations in temperature and magnetic field strength, as well as by the effect of annealing in different media on the cluster properties.  相似文献   

16.
The investigation addresses the electron transport properties of Co71−xFexCr7Si8B14 (x=0, 2, 3.2, 4, 6, 8 and 12 at%) amorphous alloys. The variation in electrical resistivity of as-cast amorphous materials with thermal scanning from room temperature to 1000 K was measured. The CoFe-based alloys revealed an initial decrease in temperature coefficient of resistivity (TCR), a characteristic of spin-wave phenomena in glassy metallic systems. This behaviour in the present alloys was in a sharp contrast to the Co-based amorphous materials that indicate the drop in resistivity much below room temperature. In the studied alloys, the variation in initial TCR values and the full-width at half-maxima determined from X-ray diffraction of as-quenched materials exhibited a similar trend with increasing Fe content, indicating the compositional effect of near neighbouring atoms. After the initial decrease in resistivity, all the alloys indicated a subsequent increase at Tmin. The Curie temperature (TC), which was measured from thermal variation of ac susceptibility showed non-monotonic change with Fe content. In the temperature range between Tmin and TC the relative scattering by electron-magnon and electron-phonon resulted in the non-monotonic change in Curie temperature. At crystallization onset (TX1) all the alloys except there with X=6, showed a sharp decrease in electrical resistivity which was attributed to ordering phenomena. In contrast to this resistivity decrease, X=6 alloy exhibited a drastic increase in resistivity around TX1 observed during amorphous to nanocrystalline transformation. Such nanocrystalline state was observed by Transmission electron microscopy.  相似文献   

17.
The temperature and magnetic-field dependences of the heat capacity, thermal conductivity, thermopower, and electrical resistivity of the Sm0.55Sr0.45MnO3.02 ceramic material are studied in the temperature range 77–300 K and in magnetic fields up to 26 kOe. It is revealed that the quantities under investigation exhibit anomalous behavior due to a magnetic phase transition at the Curie temperature TC. An increase in the magnetic field strength H leads to an increase in the Curie temperature TC and a jump in the heat capacity ΔCp at TC. The temperature dependences of the measured quantities are characterized by hystereses that are considerably suppressed in a magnetic field of 26 kOe and depend neither on the thermocycling range nor on the rate of change in the temperature. The thermal conductivity K at temperatures above TC shows unusual behavior for crystalline solids (dK/dT>0) and, upon the transition to a ferromagnetic state, drastically increases as a result of a decrease in the phonon scattering by Jahn-Teller distortions. It is demonstrated that the hystereses of the studied properties of the Sm0.55Sr0.45MnO3.02 manganite are caused by a jumpwise change in the critical temperature due to variations in the lattice parameters upon the magnetic phase transition.  相似文献   

18.
The temperature-dependent resistivity and thermoelectric power of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets (x=0.05, 0.10 and 0.15) between 50 and 300 K are reported. K substitution enhances the conductivity of this system. Curie temperature (TC) also increases from 260 to 309 K with increasing K content. In the paramagnetic region (T>TC), the electrical resistivity is well represented by adiabatic polaron hopping, while in the ferromagnetic region (T<TC), the resistivity data show a nearly perfect fit for all the samples to an expression containing, the residual resistivity, spin-wave and two-magnon scattering and the term associated with small-polaron metallic conduction, which involves a relaxation time due to a soft optical phonon mode. Small polaron hopping mechanism is found to fit well to the thermoelectric power (S) data for T>TC whereas at low temperatures (T<TC) in ferromagnetic region (SFM), SFM is well explained with the spin-wave fluctuation and electron–magnon scattering. Both, resistivity and thermopower data over the entire temperature range (50–300 K) are also examined in light of a two-phase model based on an effective medium approximation.  相似文献   

19.
The thermoelectric power and electrical conductivity measurements of Zn-substituted Mg-ferrites having the general formula Mg1−xZnxFe2O4 (where x=0, 0.2, 0.4 and 0.6) were carried out from room temperature to 773 K. The Seebeck coefficient is positive for all the compositions showing that these ferrites behave as p-type semiconductors and the majority charge carriers are holes. The temperature variation of the Seebeck coefficient is also discussed. The Fermi energy (EF); the density of charge carriers (n) and the carriers mobility (μ) were determined for the studied system. The variation of log σ with reciprocal of temperature shows a discontinuity at Curie temperature. The DC electrical conductivity increases with increasing temperature ensuring the semiconducting nature of the samples. The Curie temperature determined from DC electrical conductivity was found in satisfactory agreement with that determined from initial magnetic permeability measurements. This transition temperature is found to decrease with increasing Zn concentration. The activation energy in the paramagnetic region is found to be lower than that in ferrimagnetic region. The variation of room temperature conductivity with composition indicates that conductivity increases with increasing Zn content. The dependence of the electrical conductivity of Mg-Zn ferrite on Zn content is explained on the basis of the cation distribution.  相似文献   

20.
The temperature dependence of the electrical resistivity, the thermal conductivity and the thermopower of the cubic isostructural (GdxY1–x)Al2 series will be presented. The magnetic properties of this system are characterized by the existence of ferromagnetism for Gd concentrations x>0.3 while for low Gd contents cluster and spinglass behaviour is observed. The spin dependent scattering contribution to the transport phenomena has been obtained by comparing the experimental data of the magnetic compounds with those of the isostructural nonmagnetic YAl2. For the ferromagnetic concentration range and forT>T c (T c =Curie temperature) we revealed a temperature independent contribution to the electrical resistivity, a contribution with a temperature variation of 1/T to the thermal resistivity and a linear temperature dependence of this part to the thermopower. These results are in good agreement with the temperature dependence calculated by solving the linearized Boltzmann equation for this type of scattering processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号