首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Let S = {x1, … , xn} be a set of n distinct positive integers and f be an arithmetical function. Let [f(xixj)] denote the n × n matrix having f evaluated at the greatest common divisor (xixj) of xi and xj as its ij-entry and (f[xixj]) denote the n × n matrix having f evaluated at the least common multiple [xixj] of xi and xj as its ij-entry. The set S is said to be lcm-closed if [xixj] ∈ S for all 1 ? i, j ? n. For an integer x > 1, let ω(x) denote the number of distinct prime factors of x. Define ω(1) = 0. In this paper, we show that if S = {x1, … , xn} is an lcm-closed set satisfying , and if f is a strictly increasing (resp. decreasing) completely multiplicative function, or if f is a strictly decreasing (resp. increasing) completely multiplicative function satisfying (resp. f(p) ? p) for any prime p, then the matrix [f(xixj)] (resp. (f[xixj])) defined on S is nonsingular. By using the concept of least-type multiple introduced in [S. Hong, J. Algebra 281 (2004) 1-14], we also obtain reduced formulas for det(f(xixj)) and det(f[xixj]) when f is completely multiplicative and S is lcm-closed. We also establish several results about the nonsingularity of LCM matrices and reciprocal GCD matrices.  相似文献   

2.
The odd-order differential equation (−1)nx(2n+1)=f(t,x,…,x(2n)) together with the Lidstone boundary conditions x(2j)(0)=x(2j)(T)=0, 0?j?n−1, and the next condition x(2n)(0)=0 is discussed. Here f satisfying the local Carathéodory conditions can have singularities at the value zero of all its phase variables. Existence result for the above problem is proved by the general existence principle for singular boundary value problems.  相似文献   

3.
Let f,gi,i=1,…,l,hj,j=1,…,m, be polynomials on Rn and S?{xRngi(x)=0,i=1,…,l,hj(x)≥0,j=1,…,m}. This paper proposes a method for finding the global infimum of the polynomial f on the semialgebraic set S via sum of squares relaxation over its truncated tangency variety, even in the case where the polynomial f does not attain its infimum on S. Under a constraint qualification condition, it is demonstrated that: (i) The infimum of f on S and on its truncated tangency variety coincide; and (ii) A sums of squares certificate for nonnegativity of f on its truncated tangency variety. These facts imply that we can find a natural sequence of semidefinite programs whose optimal values converge, monotonically increasing to the infimum of f on S.  相似文献   

4.
We investigate the factorization of entire solutions of the following algebraic differential equations:
bn(z)finjn(f)+bn−1(z)fin−1jn−1(f)+?+b0(z)fi0j0(f)=b(z),  相似文献   

5.
The following results are proven. All subsystems of a dissipative Kolmogorov vector field ?i = xifi(x) are robustly permanent if and only if the external Lyapunov exponents are positive for every ergodic probability measure μ with support in the boundary of the nonnegative orthant. If the vector field is also totally competitive, its carrying simplex is C1. Applying these results to dissipative Lotka-Volterra systems, robust permanence of all subsystems is equivalent to every equilibrium x* satisfying fi(x* > 0 whenever xi* = 0. If in addition the Lotka-Volterra system is totally competitive, then its carrying simplex is C1.  相似文献   

6.
For linear combinations of Bernstein-Kantorovich operators Knr(fx), we give an equivalent theorem with ω2r?λ(ft). The theorem unites the corresponding results of classical and Ditzian-Totik moduli of smoothness.  相似文献   

7.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

8.
The two dimensional diffusion equation of the form is considered in this paper. We try a bi-cubic spline function of the form as its solution. The initial coefficients Ci,j(0) are computed simply by applying a collocation method; Ci,j = f(xiyj) where f(xy) = u(xy, 0) is the given initial condition. Then the coefficients Ci,j(t) are computed by X(t) = etQX(0) where X(t) = (C0,1C0,1C0,2, … , C0,NC1,0, … , CN,N) is a one dimensional array and the square matrix Q is derived from applying the Galerkin’s method to the diffusion equation. Note that this expression provides a solution that is not necessarily separable in space coordinates x, y. The results of sample calculations for a few example problems along with the calculation results of approximation errors for a problem with known analytical solution are included.  相似文献   

9.
For linear differential equations x(n)+a1x(n−1)+?+anx=0 (and corresponding linear differential systems) with large complex parameter λ and meromorphic coefficients aj=aj(t;λ) we prove existence of analogues of Stokes matrices for the asymptotic WKB solutions. These matrices may depend on the parameter, but under some natural assumptions such dependence does not take place. We also discuss a generalization of the Hukuhara-Levelt-Turritin theorem about formal reduction of a linear differential system near an irregular singular point t=0 to a normal form with ramified change of time to the case of systems with large parameter. These results are applied to some hypergeometric equations related with generating functions for multiple zeta values.  相似文献   

10.
One aspect of the inverse M-matrix problem can be posed as follows. Given a positive n × n matrix A=(aij) which has been scaled to have unit diagonal elements and off-diagonal elements which satisfy 0 < y ? aij ? x < 1, what additional element conditions will guarantee that the inverse of A exists and is an M-matrix? That is, if A?1=B=(bij), then bii> 0 and bij ? 0 for ij. If n=2 or x=y no further conditions are needed, but if n ? 3 and y < x, then the following is a tight sufficient condition. Define an interpolation parameter s via x2=sy+(1?s)y2; then B is an M-matrix if s?1 ? n?2. Moreover, if all off-diagonal elements of A have the value y except for aij=ajj=x when i=n?1, n and 1 ? j ? n?2, then the condition on both necessary and sufficient for B to be an M-matrix.  相似文献   

11.
Let F ⊂ K be fields of characteristic 0, and let K[x] denote the ring of polynomials with coefficients in K. Let p(x) = ∑k = 0nakxk ∈ K[x], an ≠ 0. For p ∈ K[x]\F[x], define DF(p), the F deficit of p, to equal n − max{0 ≤ k ≤ n : akF}. For p ∈ F[x], define DF(p) = n. Let p(x) = ∑k = 0nakxk and let q(x) = ∑j = 0mbjxj, with an ≠ 0, bm ≠ 0, anbm ∈ F, bjF for some j ≥ 1. Suppose that p ∈ K[x], q ∈ K[x]\F[x], p, not constant. Our main result is that p ° q ∉ F[x] and DF(p ° q) = DF(q). With only the assumption that anbm ∈ F, we prove the inequality DF(p ° q) ≥ DF(q). This inequality also holds if F and K are only rings. Similar results are proven for fields of finite characteristic with the additional assumption that the characteristic of the field does not divide the degree of p. Finally we extend our results to polynomials in two variables and compositions of the form p(q(xy)), where p is a polynomial in one variable.  相似文献   

12.
Let a, n ? 1 be integers and S = {x1, … , xn} be a set of n distinct positive integers. The matrix having the ath power (xixj)a of the greatest common divisor of xi and xj as its i, j-entry is called ath power greatest common divisor (GCD) matrix defined on S, denoted by (Sa). Similarly we can define the ath power LCM matrix [Sa]. We say that the set S consists of finitely many quasi-coprime divisor chains if we can partition S as S = S1 ∪ ? ∪ Sk, where k ? 1 is an integer and all Si (1 ? i ? k) are divisor chains such that (max(Si), max(Sj)) = gcd(S) for 1 ? i ≠ j ? k. In this paper, we first obtain formulae of determinants of power GCD matrices (Sa) and power LCM matrices [Sa] on the set S consisting of finitely many quasi-coprime divisor chains with gcd(S) ∈ S. Using these results, we then show that det(Sa)∣det(Sb), det[Sa]∣det[Sb] and det(Sa)∣det[Sb] if ab and S consists of finitely many quasi-coprime divisor chains with gcd(S) ∈ S. But such factorizations fail to be true if such divisor chains are not quasi-coprime.  相似文献   

13.
In the middle of the 20th century Hardy obtained a condition which must be imposed on a formal power series f(x) with positive coefficients in order that the series f −1(x) = $ \sum\limits_{n = 0}^\infty {b_n x^n } $ \sum\limits_{n = 0}^\infty {b_n x^n } b n x n be such that b 0 > 0 and b n ≤ 0, n ≥ 1. In this paper we find conditions which must be imposed on a multidimensional series f(x 1, x 2, …, x m ) with positive coefficients in order that the series f −1(x 1, x 2, …, x m ) = $ \sum i_1 ,i_2 , \ldots ,i_m \geqslant 0^b i_1 ,i_2 , \ldots ,i_m ^{x_1^{i_1 } x_2^{i_2 } \ldots x_m^{i_m } } $ \sum i_1 ,i_2 , \ldots ,i_m \geqslant 0^b i_1 ,i_2 , \ldots ,i_m ^{x_1^{i_1 } x_2^{i_2 } \ldots x_m^{i_m } } satisfies the property b 0, …, 0 > 0, $ bi_1 ,i_2 , \ldots ,i_m $ bi_1 ,i_2 , \ldots ,i_m ≤ 0, i 12 + i 22 + … + i m 2 > 0, which is similar to the one-dimensional case.  相似文献   

14.
We prove the existence of periodic solutions in a compact attractor of (R+)n for the Kolmogorov system x′i = xifi(t, x1, , xn), i = l, …, n in the competitive case. Extension to differential delay equations are con- sidered too. Applications are given to Lotka-Volterra systems with periodic coefficients.  相似文献   

15.
We consider matrices M with entries mij = m(λiλj) where λ1, … ,λn are positive numbers and m is a binary mean dominated by the geometric mean, and matrices W with entries wij = 1/m (λiλj) where m is a binary mean that dominates the geometric mean. We show that these matrices are infinitely divisible for several much-studied classes of means.  相似文献   

16.
The local behavior of the iterates of a real polynomial is investigated. The fundamental result may be stated as follows: THEOREM. Let xi, for i=1, 2, ..., n+2, be defined recursively by xi+1=f(xi), where x1 is an arbitrary real number and f is a polynomial of degree n. Let xi+1?xi≧1 for i=1, ..., n + 1. Then for all i, 1 ≦i≦n, and all k, 1≦k≦n+1?i, $$ - \frac{{2^{k - 1} }}{{k!}}< f\left[ {x_1 ,... + x_{i + k} } \right]< \frac{{x_{i + k + 1} - x_{i + k} + 2^{k - 1} }}{{k!}},$$ where f[xi, ..., xi+k] denotes the Newton difference quotient. As a consequence of this theorem, the authors obtain information on the local behavior of the solutions of certain nonlinear difference equations. There are several cases, of which the following is typical: THEOREM. Let {xi}, i = 1, 2, 3, ..., be the solution of the nonlinear first order difference equation xi+1=f(xi) where x1 is an arbitrarily assigned real number and f is the polynomial \(f(x) = \sum\limits_{j = 0}^n {a_j x^j } ,n \geqq 2\) . Let δ be positive with δn?1=|2n?1/n!an|. Then, if n is even and an<0, there do not exist n + 1 consecutive increments Δxi=xi+1?xi in the solution {xi} with Δxi≧δ. The special case in which the iterated polynomial has integer coefficients leads to a “nice” upper bound on a generalization of the van der Waerden numbers. Ap k -sequence of length n is defined to be a strictly increasing sequence of positive integers {x 1, ...,x n } for which there exists a polynomial of degree at mostk with integer coefficients and satisfyingf(x j )=x j+1 forj=1, 2, ...,n?1. Definep k (n) to be the least positive integer such that if {1, 2, ...,p k (n)} is partitioned into two sets, then one of the two sets must contain ap k -sequence of lengthn. THEOREM. pn?2(n)≦(n!)(n?2)!/2.  相似文献   

17.
Most known results on existence,uniqueness and stability for solutions of the polynomial-like iterative equation Σni=1λifi(x)=F(x) were obtained in the case of λ 1 = 0.In this paper,we construct C 0 decreasing solutions of the iterative equation in the case that λ 1 can vanish to answer the Leading Coefficient Problem.Moreover,we also give the necessary and sufficiently condition for uniqueness of solutions.  相似文献   

18.
In this paper we discuss a combinatorial problem involving graphs and matrices. Our problem is a matrix analogue of the classical problem of finding a system of distinct representatives (transversal) of a family of sets and relates closely to an extremal problem involving 1-factors and a long standing conjecture in the dimension theory of partially ordered sets. For an integer n ?1, let n denote the n element set {1,2,3,…, n}. Then let A be a k×t matrix. We say that A satisfies property P(n, k) when the following condition is satisfied: For every k-taple (x1,x2,…,xk?nk there exist k distinct integers j1,j2,…,jk so that xi= aii for i= 1,2,…,k. The minimum value of t for which there exists a k × t matrix A satisfying property P(n,k) is denoted by f(n,k). For each k?1 and n sufficiently large, we give an explicit formula for f(n, k): for each n?1 and k sufficiently large, we use probabilistic methods to provide inequalities for f(n,k).  相似文献   

19.
In the present paper we consider the Bézier variant of BBH-Kantorovich operators Jn,αf for functions f measurable and locally bounded on the interval [0, ∞) with α ? 1. By using the Chanturiya modulus of variation we estimate the rate of pointwise convergence of Jn,αf(x) at those x > 0 at which the one-sided limits f(x+), f(x−) exist. The very recent result of Chen and Zeng (2009) [L. Chen, X.M. Zeng, Rate of convergence of a new type Kantorovich variant of Bleimann-Butzer-Hahn Operators, J. Inequal. Appl. 2009 (2009) 10. Article ID 852897] is extended to more general classes of functions.  相似文献   

20.
We analyze a system of discrete fractional difference equations subject to nonlocal boundary conditions. We consider the system of equations given by -Δνiyi(t)=λiai(t+νi-1)fi(y1(t+ν1-1),y2(t+ν2-1)), for t∈[0,b]N0, subject to yi(νi − 2) = ψi(yi) and yi(νi + b) = ?i(yi), for i = 1, 2, where ψi,?i:Rb+3R are given functionals. We also assume that νi ∈ (1, 2], for each i. Although we assume that both ai and fi(y1y2) are nonnegative for each i, we do not necessarily presume that each ψi(yi) and ?i(yi) is nonnegative for each i and each yi ? 0. This generalizes some recent results both on discrete fractional boundary value problems and on discrete integer-order boundary value problems, and our techniques provide new results in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号