首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exfoliated graphene particles stabilised by the cationic polyelectrolyte polyethyleneimine (PEI) were used in conjunction with an anionic polyelectrolyte, poly(acrylic acid), to construct multilayers using the layer-by-layer technique on a silica substrate. In the first adsorption step, the surface excess of the cationic graphene was dependent on the overall charge on the nanoparticle which in turn can be tuned through modifying solution pH as PEI has weakly ionisable charged amine groups. The adsorbed amount onto the silica surface increased as the solution pH increased. Subsequently, a layer of PAA was adsorbed on top of the cationic graphene through electrostatic interaction. The multilayer could be assembled through this alternate deposition, with the influence of solution conditions investigated. The pH of the adsorbing solutions was the chief determinant of the overall adsorbed amounts, with more mass added at the elevated pH of 9 in comparison with pH 4. Atomic force microscopy confirmed that the graphene particles were adsorbed to the silica interface and that the surface coverage of the disc-like nanoparticles was complete after the deposition of five graphene-polyelectrolyte bi-layers. Furthermore, the graphene nanoparticles themselves could be modified through the consecutive addition of the oppositely charged polymers. A multilayered assembly of negatively charged graphene sheets modified with a bi-layer of PEI and PAA was also deposited on a silica surface with adsorbed PEI.  相似文献   

2.
The electro-oxidation of CO on model platinum-tin alloy catalysts has been studied by ex-situ electrochemical measurements following the preparation of the Pt(111)/Sn(2x2) and Pt(111)/Sn(radical3 x radical3)R30 degrees surfaces. A surface redox couple, which is associated with the adsorption/desorption of hydroxide on the Sn sites, is observed at 0.28 V(RHE)/0.15 V(RHE) in H(2)SO(4) electrolyte on both surfaces. Evidence that it is associated with the adsorption of OH comes from ex-situ photoemission measurements, which indicate that the Sn atoms are in a metallic state at potentials below 0.15 V(RHE) and an oxidized state at potentials above 0.28 V(RHE). Specific adsorption of sulfate anions is not associated with the surface process since there is no evidence from photoemission of sulfate adsorption, and the same surface couple is observed in the HClO(4) electrolyte. CO is adsorbed from solution at 300 K, with saturation coverages of 0.37 +/- 0.05 and 0.2 +/- 0.05 ML, respectively. The adsorbed CO is oxidatively stripped at the potential coincident with the adsorption of hydroxide on the tin sites, viz., 0.28 V(RHE). This strong promotional effect is unambiguously associated with the bifunctional mechanism. The Sn-induced activation of water, and promotion of CO electro-oxidation, is sustained as long as the alloy structure remains intact, in the potential range below 0.5 V(RHE). The results are discussed in the light of the requirements for CO-tolerant platinum-based electrodes in hydrogen fuel cell anode catalysts and catalysts for direct methanol electro-oxidation.  相似文献   

3.
Electrochemical measurements were performed to characterize the kinetics of adsorbed CO oxidation on the surface of the stepped Pt(s)-[4(111)x(100)][triple bond, length half m-dash]Pt(335) single crystal electrode. For CO adsorbed to full coverage at 0.1 V (versus the reversible hydrogen electrode, RHE) in 0.5 M H(2)SO(4) at ambient temperature (23 degrees C), oxidation of the layer gave 7.6 x 10(14) +/- 0.3 CO/cm(2) as the saturation CO coverage, just below the average value reported for CO on Pt(335) in ultra high vacuum (8.3 x 10(14) +/- 0.6 CO/cm(2)). In potential step measurements carried out between 0.75 and 0.9 V, the peak region in the current-time transient was consistent with the surface reaction between adsorbed CO and adsorbed oxide as rate limiting. Plotting the log of the rate constant for the surface reaction versus potential gave a Tafel slope of 79 mV per decade, consistent with responses for CO electrochemical oxidation on structurally related stepped Pt electrodes. For CO coverages below saturation, current-time transients were more stable in 0.05 M H(2)SO(4) than in the higher concentration electrolyte. Numerically solving the rate equations to the Langmuir-Hinshelwood model of adsorbed CO electrochemical oxidation reproduced the main features in current-time transients measured at 0.7 V in 0.05 M H(2)SO(4) for sub-saturation CO coverages. The results provide new insights into CO oxidation on Pt at sub-saturation coverage and confirm that anions play a role in CO surface chemistry.  相似文献   

4.
Using density functional theory calculations, we have studied the morphology of a Pt37 nanoparticle supported on carbon with and without hydrogen (H) passivation that arises with postprocessing of nanoparticles before characterization. Upon heating in an anneal cycle, we find that without H (e.g., in a helium atmosphere or evacuation at high temperature), the morphology change of a truncated cuboctahedral Pt37 is driven by the shearing of (100) to (111) facets to lower the surface energy, a remnant shear instability that drives surface reconstruction in semi-infinite Pt(100). With H passivation from a postprocessing anneal, we show that the sheared structure automatically reverts to the observed truncated cuboctahedral structure and the average first nearest-neighbor Pt-Pt bond length increases by 3%, agreeing well with experiment. We explain the stabilization of the truncated cuboctahedral structure due to H passivation via adsorption energetics of hydrogen on Pt(100) and (111) facets, specifically, the preference for H adsorption at bridge sites on (100) facets, which should be considered in a realistic model for H adsorption on Pt nanoparticles. We find that dramatic morphological change of a nanoparticle can occur even with small changes to first-shell Pt-Pt coordination number. The implications of our findings when comparing to experimental data are discussed.  相似文献   

5.
The dynamics of the electrooxidation of adsorbed CO, COads, on polycrystalline Pt microelectrodes has been examined in CO-saturated 0.5 M H2SO4 and 0.5 M HClO4 aqueous solutions, using in situ, time-resolved, normalized differential reflectance spectroscopy lambda = 633 nm). Attention was focused on the unique dependence of COads oxidation on the potential at which the adsorbed full CO monolayer is assembled (i.e., hydrogen adsorption/desorption vs the double-layer region) using both fast linear scan voltammetry and potential step techniques. As evidenced from the data collected, COads oxidation at a fixed potential proceeds at slower rates when the monolayer is formed in the double- layer region compared to when it is formed in the hydrogen adsorption/desorption region. Possible explanations for this effect are discussed.  相似文献   

6.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

7.
Electrochemical adsorption of SO(2) on platinum is complicated by the change in sulfur oxidation state with potential. Here, we attempt to identify SO(2) adsorption products on catalyst coated membranes (CCMs) at different electrode potentials using a combination of in situ sulfur K-edge XANES (X-ray absorption near-edge structure) spectroscopy and electrochemical techniques. CCMs employed platinum nanoparticles supported on Vulcan carbon (Pt/VC). SO(2) was adsorbed from a SO(2)/N(2) gas mixture while holding the Pt/VC-electrode potential at 0.1, 0.5, 0.7, and 0.9 V vs a reversible hydrogen electrode (RHE). Sulfur adatoms (S(0)) are identified as the SO(2) adsorption products at 0.1 V, while mixtures of S(0), SO(2), and sulfate/bisulfate ((bi)sulfate) ions are suggested as SO(2) adsorption products at 0.5 and 0.7 V. At 0.9 V, SO(2) is completely oxidized to (bi)sulfate ions. The identity of adsorbed SO(2) species on Pt/VC catalysts at different electrode potentials is confirmed by modeling of XANES spectra using FEFF8 and a linear combination of experimental spectra from sulfur standards. Results on SO(2) speciation gained from XANES are used to compare platinum-sulfur electronic interactions for Pt(3)Co/VC versus Pt/VC catalysts in order to understand the difference between the two catalysts in terms of SO(2) contamination.  相似文献   

8.
The effect of adsorption on molecular properties and reactivity is a central topic in interfacial physical chemistry. At electrochemical interfaces, adsorbed molecules may lose their electrochemical activity. The absence of in situ probes has hindered our understanding of this phenomenon and electrode reactions in general. In this work, classical electrochemistry and electrochemical scanning tunneling microscopy (EC-STM) were combined to provide molecular level insight into electrochemical reactions and the molecular adsorption state at the electrolyte-electrode interface. The metal-free porphyrin 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP) adsorbed on Au(111) in 0.1 M H(2)SO(4) solution was chosen as a model system. TPyP is found to irreversibly adsorb on Au(111) over a wide range of potentials, from -0.25 to 0.6 V(SCE). The adsorption state of TPyP has a dramatic effect on its electrochemistry. Preadsorbed, oxidized TPyP displays no well-defined cathodic peaks in cyclic voltammograms in sharp contrast to solution-phase TPyP. Our present work provides direct, molecular level evidence of the electrochemically "invisible" species. Electrochemical activity of absorbed species is recovered by allowing the oxidized molecule sufficient time (tens of minutes) to reduce. The redox state of adsorbed TPyP also affects the nature of the adsorption. Oxidized species can apparently only form monolayers. However, multilayers, stable enough to be imaged by STM, can form when the adsorbed TPyP is in the reduced state. This suggests that by controlling the electrochemistry one can either promote or suppress the formation of multilayers.  相似文献   

9.
Hydrophilic and chemically reactive porous media were prepared by adsorbing functional polymers at the surface of sintered polyethylene membranes. Modification of the membrane was accomplished by first exposing the membrane to an oxygen glow discharge gas plasma to introduce an electrostatic charge at the membrane surfaces. Cationic polyelectrolyte polyethylenimine (PEI) was adsorbed from solution to the anionic-charged surface to form an adsorbed monolayer. The adsorption of a second anionic polyelectrolyte onto the PEI layer allows further modification of the membrane surface to form a polyelectrolyte-bilayer complex. The conformation and stability of the adsorbed monolayers and bilayers comprising the modified surface are probed as a function of the polymer structure, charge density, and solubility. Using X-ray photoelectron spectroscopy analysis, we demonstrate that the presence of the polyelectrolyte multilayers drastically increases the density and specificity of the functional groups at the surface, more than what can be achieved through the plasma modification alone. Also, using the wicking rate of deionized, distilled water through the porous membrane to gauge the interfacial energy of the modified surface, we show that the membrane wicking rate can be controlled by varying the chemistry of the adsorbing polyelectrolytes and, to a lesser extent, by adjusting the polarity or ionic strength of the polyelectrolyte solution.  相似文献   

10.
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (IV) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe3O4 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of cinnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.  相似文献   

11.
本文用现场红外反射吸收光谱电化学方法和循环伏安法研究铂电析上苯和苯磺酸的吸附定向。对于苯/铂势系, 电势在-0.6至0.0V(相对饱和甘汞电极)内, 苯主要以垂直方式吸附; 在0.0至0.8V内则主要以平躺方式吸附。对于苯磺酸/铂体系,电势在-0.4V至0.0V内, 苯磺酸分子中的苯环主要呈垂直吸附且SO~3H基团远离电极表面; 在0.0至1.0V内则主要以倾斜平躺方式吸附, SO~3H基团通过其中的两个氧原子吸附于电极表面上。  相似文献   

12.
硫酸溶液中Pt电极表面过程的EQCM研究   总被引:5,自引:0,他引:5  
应用电化学循环伏安和石英晶体微天平(EQCM)方法研究了0.1mol·L-1硫酸溶液中Pt电极表面的吸附和氧化过程.从电极表面质量变化的结果分析,可认为正向电位扫描时氢区表面质量的增加是由于水分子取代Had引起的,而双电层区的质量增加则是由于水的吸附模式逐渐由氢端吸附转向氧端吸附所致.根据频率变化和电量数据,进一步推算出水在双电层区是以低放电吸附形式出现的,1molPt原子和水分子只发生0.054mol的电荷转移.本文结果可为认识Pt电极表面过程提供定量的新数据.  相似文献   

13.
Ito M  Nakamura M 《Faraday discussions》2002,(121):71-84; discussion 97-127
Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.  相似文献   

14.
The adsorption of H(2)O(2) on Pt and Pt-M alloys, where M is Cr, Co, or Ni, is investigated using density functional theory. Binding energies calculated with a hybrid DFT functional (B3PW91) are in the range of -0.71 to -0.88 eV for H(2)O(2) adsorbed with one of the oxygen atoms on top Pt positions of Pt(3), Pt(2)M, and PtM(2), and enhanced values in the range of -0.81 to -1.09 eV are found on top Ni and Co sites of the Pt(2)M clusters. Adsorption on top sites of Pt(10) yields a weaker binding of -0.48 eV, whereas on periodic Pt(111) and Pt(3)Co(111) surfaces, H(2)O(2) generally dissociates into two OH radicals. On the other hand, attempts to attach H(2)O(2) on bridge sites cause spontaneous dissociation of H(2)O(2) into two adsorbed OH radicals, suggesting that stable adsorptions on bridge sites are not possible for any of the clusters or extended surfaces that are being studied. We also found that the water-H(2)O(2) interaction reduces the strength of the adsorption of H(2)O(2) on these clusters and surfaces.  相似文献   

15.
铂催化氧还原反应过程中磷酸的影响及抑制磷酸吸附策略   总被引:1,自引:0,他引:1  
与低温(<100oC)质子交换膜燃料电池相比,磷酸掺杂PBI膜燃料电池可工作于100–200 oC,工作温度的提高有利于提高电极反应动力学速率、增加Pt催化剂对CO等毒物的耐受性,以及简化电池水管理等.然而,磷酸在Pt催化剂表面吸附较强,这将造成Pt一定程度的毒化.基于“第三体效应”,即在Pt表面预吸附某些小分子,可在一定程度上抑制磷酸吸附,然而预吸附分子同时也将占据Pt表面部分活性位点,因而Pt的催化性能最终由两个因素决定:磷酸抑制程度和预吸附分子在Pt表面的覆盖度.
  本文系统考察了Pt表面预吸附分子覆盖度和预吸附分子链长对其催化氧还原反应(ORR)活性的影响.首先,通过控制预吸附了胺类分子的Pt电极的电位,得到表面具有不同覆盖度的Pt电极,考察了0.1 mol/L H3PO4电解液中Pt电极对ORR的催化活性随预吸附分子覆盖度的变化规律;为分离磷酸吸附和修饰分子吸附本身对Pt催化活性的影响,对比了0.1 mol/L HClO4电解液中Pt电极对ORR的催化活性随预吸附分子覆盖度的变化规律.进一步对比研究了不同链长胺分子——正丁胺(BA)、正辛胺(OA)及十二胺(DA)等作为修饰分子对Pt/C催化剂电催化ORR活性的影响.结果表明,随修饰分子在Pt表面覆盖度提高,在0.1 mol/L HClO4溶液中,由于预吸附分子占据Pt部分活性位,修饰后光滑Pt电极表面的本征活性单调下降;而在0.1 mol/L H3PO4中,修饰后光滑Pt电极表面的ORR活性呈现先升高后降低的趋势,当预吸附分子覆盖度约为20%时,其ORR活性最高,为未修饰的光滑Pt电极表面的1.67倍.这表明预吸附分子有效抑制了磷酸的吸附,且当预吸附分子覆盖度约为20%时,预吸附分子对Pt表面的占据与其抑制磷酸吸附的作用达到最佳平衡点.然而,当修饰分子BA, OA和DA在Pt表面覆盖度分别为38.6%,26.1%和26.1%时, Pt/C在0.1 mol/L H3PO4中的ORR催化活性接近,分别为未经修饰Pt/C电催化剂的1.7,1.8和2.0倍,这表明预吸附分子链长对ORR催化活性影响较小,表面预吸附分子抑制磷酸吸附的策略对Pt/C催化剂也同样适用.同时, Pt/C电极经BA, OA和DA修饰后,其在0.1 mol/L HClO4中的比表面活性分别为未经修饰Pt/C电催化剂的1.0,1.1和1.3倍,与修饰后光滑Pt电极表面本征ORR活性变化规律不一致.然而,与Pt在HClO4电解质中的ORR活性相比, ORR的半波电位仍有大约123 mV的差距,今后还需继续从催化剂的角度,如调控Pt表面的吸附特性,或从创新电解质的角度,如有机磷酸电解质等出发解决磷酸毒化的问题.  相似文献   

16.
The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.  相似文献   

17.
γ-Mo2N催化剂上H2及NO吸附性质的TPD-MS研究   总被引:2,自引:0,他引:2  
采用TPD-MS方法研究了H2及NO在γ-Mo2N上的吸附状况.单独的H2-TPD结果表明,当H2在673K吸附时,在443K、573K及723K得到了三个H2脱附峰,表明γ-Mo2N上有三种不同能量的H2吸附位.NO-TPD结果表明,NO吸附后亦有三个脱附峰(383K、493K、543K),对应着γ-Mo2N上三种不同能量的NO吸附位:低、中、高能吸附位.NO既可以以解离状态,又可以以一种NO三聚态(dimerordinitrosyl)的形式吸附在γ-Mo2N上,这些吸附物种在脱附过程中产生大量的N2及少量的N2O.对比NO吸附在不同处理条件的γ-Mo2N上的TPD结果可知,NO是吸附在γ-Mo2N上的MO的配位不饱和中心上,这些吸附中心既可通过还原催化剂,又可通过在773K抽空钝化态的γ-Mo2N而产生,H2和NO共吸附的结果表明,预吸附H2再吸附NO后,H2和NO的脱附量均大大减少,且只有两个脱附峰出现.NO只在363K及493K出现两个脱附峰,表明预吸附氢占据了NO的强吸附位,且NO很难取代它,从而使NO只能吸附在能量较低的吸附位上;而H2只在523K及723K出现两个脱附峰,且伴随着H2的脱出有N2和H2O的产生,表明在γ-Mo2N上NO可能与预吸附氢形成了一种复合相MoHx(NO)y,它在脱附时分解为H2、N2及H2O.  相似文献   

18.
The reversible adsorption of acetate on polycrystalline Au and Pt surfaces was investigated with broadband sum-frequency generation (SFG) and cyclic voltammetry. Specifically adsorbed acetate as well as coadsorbed sulfuric acid anions are observed for the first time with SFG and give rise to dramatically different SFG intensities on Au and Pt surfaces. While similar coverages of acetate adlayers on Au and Pt surfaces are well established by previous studies, an identification of the interfacial molecular structure has been elusive. However, we have applied the high sensitivity of SFG for interfacial polar ordering to identify different acetate structures at Au and Pt surfaces in contact with HClO(4) and H(2)SO(4) electrolytes. Acetate competes with the formation of surface oxides and shifts the oxidation threshold of both Au and Pt electrodes anodically. Effects of the supporting electrolyte on the formation of acetate adlayers are revealed by comparing SFG spectra in HClO(4) and H(2)SO(4) solutions: Sulfuric acid anions modify the potential-dependent acetate adsorption, compete with adsorbed acetate on Au and coadsorb with acetate on Pt surfaces.  相似文献   

19.
This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.  相似文献   

20.
用密度泛函理论的总能计算研究了金属铜(100)面的表面原子结构以及在不同覆盖度时氢原子的吸附状态. 研究结果表明, 在Cu(100)c(2×2)/H表面体系中, 氢原子吸附的位置是在空洞位置, 距最外层Cu原子层的距离为0.052 nm, 相应的Cu—H键长为0.189 nm, 并通过计算结构参数优化否定了其它的吸附位置模型. 总能计算得出Cu(100)c(2×2)/H表面的功函数为4.47 eV, 氢原子在这一体系的吸附能为2.37 eV(以孤立氢原子为能量参考点). 通过与衬底原子的杂化, 氢原子形成了具有二维特征的氢能带结构, 在费米能级以下约0.8 eV处出现的表面局域态是Cu(S)-H-Cu(S-1)型杂化的结果. 采用Cu(100)表面p(1×1)、p(2×2)和p(3×3)的三种氢吸附结构分别模拟1, 1/4, 1/9的原子单层覆盖度, 计算结果表明, 随着覆盖度的增加, 被吸附的氢原子之间的距离变短, 使得它们之间的静电排斥和静电能增大, 从而导致表面吸附能和吸附H原子与最外层Cu原子间垂直距离(ZH-Cu)逐渐减小. 在较低的覆盖度下, 氢原子对Cu(100)表面的影响主要表现为单个原子吸附作用的形式. 通过总能计算还排除了Cu(100)表面(根号2×2根号2)R45°-2H缺列再构吸附模型的可能性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号