首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The electrophoretic mobility and zeta potential of bovine knee chondrocytes (BKCs), methyl methacrylate-sulfopropyl methacrylate (MMA-SPM) nanoparticles (NPs), polybutylcyanoacrylate (PBCA) NPs, and solid lipid nanoparticles (SLNs) were investigated under the influences of Na+, K+, and Ca2+ with various ionic strengths. The fixed charge density in the surface layers of the four biocolloidal particles was estimated from the experimental mobility of capillary electrophoresis with a theory of soft charged colloids. The results revealed that, for a specific cationic species, the absolute values of the electrophoretic mobility, the zeta potential, and the fixed charge density decreased with an increase in ionic strength. For a constant ionic strength, the effect of ionic species on the reduction in the absolute values of the electrophoretic mobility, the zeta potential, and the fixed charge density followed the order Na+>K+>Ca2+ for the negatively charged BKCs, MMA-SPM NPs, and SLNs. The reverse order is true for the positively charged PBCA NPs.  相似文献   

2.
The use of nanoparticles (NPs) in immunodiagnostics is a challenging task for many reasons, including the need for miniaturization. In view of the development of an assay dedicated to an original, miniaturized and fully automated immunodiagnostics which aims to mimic in vivo interactions, magnetic zwitterionic bifunctional amino/polyethyleneoxide maghemite core/silica shell NPs functionalized with allergenic α‐lactalbumin were characterized by CE. Proper analytical performances were obtained through semi‐permanent capillary coating with didodecyldimethylammonium bromide (DDAB) or permanent capillary wall modification by hydroxypropylcellulose. The influence of experimental conditions (e.g. buffer component nature, pH, ionic strength, and electric field strength) on sample stability, electrophoretic mobility, and dispersion was investigated using either DDAB‐ or hydroxypropylcellulose‐coated capillaries. Adsorption to the capillary wall and aggregation phenomena were evaluated according to the CE conditions. The proper choice of experimental conditions, i.e. separation under −10 kV in a 25 mM ionic strength MES/NaOH (pH 6.0) with a DDAB‐coated capillary, allowed the separation of the grafted and the non‐grafted NPs.  相似文献   

3.
Morales MC  Lin H  Zahn JD 《Lab on a chip》2012,12(1):99-108
Sample pre-concentration can be a critical element to improve sensitivity of integrated microchip assays. In this work a converging Y-inlet microfluidic channel with integrated coplanar electrodes was used to investigate transverse DNA and protein migration under uniform direct current (DC) electric fields to assess the ability to concentrate a sample prior to other enzymatic modifications or capillary electrophoretic separations. Employing a pressure-driven flow to perfuse the microchannel, negatively charged samples diluted in low and high ionic strength buffers were co-infused with a receiving buffer of the same ionic strength into a main daughter channel. Experimental results demonstrated that, depending of the buffer selection, different DNA migration and accumulation dynamics were seen. Charged analytes could traverse the channel width and accumulate at the positive bias electrode in a low electroosmotic mobility, high electrophoretic mobility, high ionic strength buffer or migrated towards an equilibrium position within the channel in a high electroosmotic mobility, high electrophoretic mobility, low ionic strength buffer. The various migration behaviours are the result of a balance between the electrophoretic force and a drag force induced by a recirculating electroosmotic flow generated across the channel width due to the bounding walls. Under continuous flow conditions, DNA samples were concentrated several-fold by balancing these transverse electrokinetic forces. The electrokinetic trapping technique presented here is a simple technique which could be expanded to concentrate or separate other analytes as a preconditioning step for downstream processes.  相似文献   

4.
Chen X  Xie J  Li C  Hu Z  Chen X 《Journal of separation science》2004,27(12):1005-1010
Peak splitting has a detrimental effect on analyses by capillary electrophoresis. Many papers have reported it and several mechanisms have been proposed to explain the phenomenon. We investigated the electrophoretic behavior of an amphoteric analyte, levodopa, in phosphate buffer and observed a peak splitting phenomenon at moderate sample concentrations and under general analytical conditions, even without organic solvent. The dependence of effective mobility on pH was taken into account and pKa values of 2.30, 8.11, and 9.92 were obtained for levodopa. Then, we constructed pH-dependent distribution diagrams of levodopa and phosphate species present in aqueous solution and proposed that the most relevant factors contributing to peak splitting are the presence of ionizable groups in the analyte molecule and the occurrence of ionization, yielding charged species which interacted with buffer electrolyte species in a definite pH range to form complexes. This result is different from those presented in the literature and broadens our understanding of amphoteric analyte peak splitting.  相似文献   

5.
With the view of designing new nanoparticle (NP)–aptamer conjugates and proving their suitability as biorecognition tools for miniaturized molecular diagnostics, new maghemite–silica core–shell NP–aptamer conjugates were characterized for the first time in terms of grafting rate and colloidal stability under electrophoretic conditions using capillary electrophoresis. After the grafting rate (on the order of six to 50) of the lysozyme-binding aptamer had been estimated, the electrophoretic stability and peak dispersion of the resulting oligonucleotide–NP conjugates were estimated so as to determine the optimal separation conditions in terms of buffer pH, ionic strength and nature, as well as temperature and electric field strength. The effective surface charge density of the NPs was close to zero for pH lower than 5, which led to some aggregation. The NPs were stable in the pH range from 5 to 9, and an increase in electrophoretic mobility was evidenced with increasing pH. Colloidal stability was preserved at physiological pH for both non-grafted NPs and grafted NPs in the 10–100 mM ionic strength range and in the 15–60 °C temperature range. A strong influence of the nature of the buffer counterion on NP electrophoretic mobility and peak dispersion was evidenced, thus indicating some interactions between buffer components and NP–aptamer conjugates. Whereas an electric field effect (50–900 V cm?1) on NP electrophoretic mobility was evidenced, probably linked to counterion dissociation, temperature seems to have an appreciable effect on the zeta potential and aptamer configuration as well. This information is crucial for estimating the potentialities of such biorecognition tools in electrophoretic systems.  相似文献   

6.
A hydrophilic polymer, poly(vinylpyrrolidone) (PVP), was employed for suppressing the electroosmotic flow (EOF). A capillary was filled with aqueous PVP solution for coating the capillary wall with PVP; the PVP solution was then replaced by a migration buffer solution containing no PVP. Three types of PVP with different molecular weights were examined. The EOF was suppressed more effectively as the molecular weight of PVP increased. The EOF in the coated capillary was approximately 10-fold smaller than that of a bare capillary and was constant in the pH range of 6-8. The suppressed EOF was stable even when no PVP was added to the migration buffer. However, the EOF increased significantly when sodium dodecyl sulfate was added into the migration buffer. The method was applied for determining the electrophoretic mobilities of inorganic anions that have negative electrophoretic mobilities larger than the electroosmotic mobility of the bare capillary. A novel method for determining the electrophoretic mobilities was proposed based on the linear relationship between electric current and electrophoretic mobility. The electrophoretic mobility was proportional to the electric current. Therefore, the intercept of the regression equation represents the electrophoretic mobility at room temperature. The electrophoretic mobilities were in good agreement with the absolute electrophoretic mobilities.  相似文献   

7.
Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.  相似文献   

8.
《Analytica chimica acta》2002,458(2):355-366
The effect of pH and ionic strength on the migration of neutral acids in capillary zone electrophoresis (CZE) has been studied for several phenols. The mobilities of the phenols and the efficiency of the capillary have been related to the studied factors. The mobility can be related to the pH of the running buffer through the mobility of the phenolate ion, and the conditional acidity pK value of the phenol at the working ionic strength. This allows prediction of the migration of the phenol, solely from its pKa value (literature pKa corrected for the ionic strength of the solution) and mobility of the anion, which can be easily calculated from the mobility at a basic pH value and the pKa value. Combination of the predicted mobility with the efficiency allows estimation of the resolution of the consecutive peaks obtained for a mixture of phenols. This method has been tested for two groups of phenols of environmental interest.  相似文献   

9.
A systematic investigation has been made into the mechanisms of the capillary zone electrophoresis (CZE) separation of 12 common nucleotides (mono-, di- and triphosphorylated) and polydeoxythymidylic acid oligonucleotides (pd(T)5-18) using electrophoretic mobility values calculated from migration time data. Relationships between electrophoretic mobility and the physicochemical characteristics of the analytes (charge, dissociation constants, charge-to-mass ratio) and the background electrolyte conditions (buffer strength, percentage organic modifier and buffer pH) were characterised. Nucleotide migration was dominated by the negatively charged phosphate groups. Additionally, there were important contributions to migration behaviour from the ionised amide groups of the nucleobases guanine and uracil at higher buffer pH values or with the presence of methanol in the electrolyte. Calculated electrophoretic mobility values for the nucleotides showed a substantially improved (5-fold) inter-run repeatability compared with migration time data. These studies show the value of representing nucleotide migration data as electrophoretic mobility in CZE for obtaining a more thorough analysis of separation mechanisms and to compensate for variation in migration time data caused by small changes in electrosmotic flow. Oligonucleotides pd(T)5-11 could be adequately resolved from their nearest neighbour, but the limit of single-base separation was pd(T)10 from pd(T)11 under the conditions used. It was calculated that a difference in charge-to-mass ratio of 2.64 x 10(-5) was required for resolution under the CZE conditions used.  相似文献   

10.
Allison SA  Perrin C  Cottet H 《Electrophoresis》2011,32(20):2788-2796
CE is used to measure the electrophoretic mobility of low molecular mass oligo-L-lysines (n=1-8) in aqueous LiH?PO? buffer, BGE, at pH 2.5 over a range of temperatures (25-50 °C) and ionic strengths (10-100 mM). Mobilities are corrected for Joule heating and under the conditions of the experiment, interaction of the peptides with the capillary walls can be ignored. A "coarse grained" bead modeling methodology (BMM) (H. Pei et al., J. Chromatogr. A 2009, 1216, 1908-1916) is used to model the mobilities. This model partially accounts for peptide conformation as well as the assumed form of its secondary structure. For highly charged oligolysines, it is necessary to properly account for the relaxation effect. In the present study, the BMM approach tends to overestimate oligolysine mobility and that effect tends to increase with increasing ionic strength and peptide length. It is proposed that association between the oligolysines and buffer components (H?PO?? in this case) that go beyond classical electrostatic interactions are responsible for this discrepancy. A simple binding model is introduced that illustrates how this association can reconcile model and experiment.  相似文献   

11.
Thermodynamic acidity constants (acid or acid-base dissociation constants, sometimes called also as ionization constants) and limiting ionic mobilities (both of them at defined temperature, usually 25°C) are the fundamental physicochemical characteristics of a weak electrolyte, that is, weak acid or weak base or ampholyte. We introduce a novel method for determining the data of a weak electrolyte by the nonlinear regression of effective electrophoretic mobility versus buffer composition dependence when measured in a set of BGEs with various pH. To correct the experimental data for zero ionic strength we use the extended Debye-Hückel model and Onsager-Fuoss law with no simplifications. Contrary to contemporary approaches, the nonlinear regression is performed on limiting mobility data calculated by PeakMaster's correction engine, not on the raw experimental mobility data. Therefore, there is no requirement to perform all measurements at a constant ionic strength of the set of BGEs. We devised the computer program AnglerFish that performs the necessary calculations in a user-friendly fashion. All thermodynamic pKa values and limiting electrophoretic mobilities for arbitrarily charged substances having any number of ionic forms are calculated by one fit. The user input consists of the buffer composition of the set of BGEs and experimentally measured effective mobilities of the inspected weak electrolyte.  相似文献   

12.
To gain insight into the mechanisms of size-dependent separation of microparticles in capillary zone electrophoresis (CZE), sulfated polystyrene latex microspheres of 139, 189, 268, and 381 nm radius were subjected to CZE in Tris-borate buffers of various ionic strengths ranging from 0.0003 to 0.005, at electric field strengths of 100-500 V cm(-1). Size-dependent electrophoretic migration of polystyrene particles in CZE was shown to be an explicit function of kappaR, where kappa(-1) and rare the thickness of electric double layer (which can be derived from the ionic strength of the buffer) and particle radius, respectively. Particle mobility depends on kappaR in a manner consistent with that expected from the Overbeek-Booth electrokinetic theory, though a charged hairy layer on the surface of polystyrene latex particles complicates the quantitative prediction and optimization of size-dependent separation of such particles in CZE. However, the Overbeek-Booth theory remains a useful general guide for size-dependent separation of microparticles in CZE. In accordance with it, it could be shown that, for a given pair of polystyrene particles of different sizes, there exists an ionic strength which provides the optimal separation selectivity. Peak spreading was promoted by both an increasing electric field strength and a decreasing ionic strength. When the capillary is efficiently thermostated, the electrophoretic heterogeneity of polystyrene microspheres appears to be the major contributor to peak spreading. Yet, at both elevated electric field strengths (500 V/cm) and the highest ionic strength used (0.005), thermal effects in a capillary appear to contribute significantly to peak spreading or can even dominate it.  相似文献   

13.
Conditions for the determination of electrophoretic mobilities of bacteria by capillary electrophoresis (CE) were explored. Most precise values are obtained using fused silica capillaries of 1–3 m length (0.25 mm inner diameter), a background buffer with an ionic strength of 0.0015 mol/L and a pH value of 7–10 at a field strength of 120 V/cm. Capillary electrophoretic separation of three different bacteria populations on the basis of their mobility differences could be realized. Electrophoretic band widths of all bacteria populations investigated are relatively large compared to molecule bands. It finds its explanation in the different distribution of surface charge density to cross-sectional area of each single cell of a population.  相似文献   

14.
Holographic sensors for monitoring ionic strength have been fabricated from charged sulphonate and quaternary ammonium monomers, incorporated into thin, polymeric hydrogel films which were transformed into volume holograms. The diffraction wavelength or reflected colour of the holograms was used to characterise their swelling or de-swelling behaviour as a function of ionic strength in various media. The effects of co-monomer structure, buffer composition, ion composition, pH and temperature were evaluated, whilst the reversibility and reproducibility of the sensor was also assessed. An acrylamide-based hologram containing equal molar amounts of negatively and positively charged monomers was shown to be able to quantify ionic strength independent of the identity of the ionic species present in the test solution. The sensor was fully reversible, free of hysteresis and exhibited little response to pH between 3 and 9 and temperature within the range 20-45 °C. The system was successfully used to quantify the ionic strength of milk solutions, which contain a complex mixture of ions and biological components.  相似文献   

15.
A polyacrylate-based monolithic column bearing cationic functionalities and designed for capillary electrochromatography (CEC) has been prepared via photopolymerization of a mixture of hexyl acrylate, butanediol diacrylate, 2-(acryloyloxy) ethyltrimethyl ammonium chloride (monomers), azobisisobutyronitrile (photoinitiator), acetonitrile, phosphate buffer, and ethanol (porogens). The polymerization process was initiated with UV light at 360 nm. The column performance was evaluated via the separations of alkylbenzenes, substituted anilines, basic drugs, peptides, and a protein digest. The separation of complex peptide mixtures was then studied since such separations constitute a promising application of capillary electrochromatography. In particular, the effects of mobile phase composition, including ionic strength of the buffer solution and the percentage of acetonitrile on the retention factor, the column efficiency, and the resolution were determined. The separations were affected by both interaction of the peptides with the stationary phase and their own electrophoretic mobility. Excellent separations with column efficiencies of up to 160 000 plates/m were achieved for both a mixture of ten well-defined peptides and a tryptic digest of cytochrome c. The fractions of eluent containing peptides of the digest separated in the monolithic column were collected and characterized using matrix-assisted laser desorption ionization mass spectrometry.  相似文献   

16.
Artificial neural networks (ANNs) were successfully developed for the modeling and prediction of electrophoretic mobility of a series of sulfonamides in capillary zone electrophoresis. The cross-validation method was used to evaluate the prediction ability of the generated networks. The mobility of sulfonamides as positively charged species at low pH and negatively charged species at high pH was investigated. The results obtained using neural networks were compared with the experimental values as well as with those obtained using the multiple linear regression (MLR) technique. Comparison of the results shows the superiority of the neural network models over the regression models.  相似文献   

17.
Yin XB 《Electrophoresis》2004,25(12):1837-1842
An on-line preconcentration method was developed for capillary electrophoresis (CE) with hydride generation-atomic fluorescence spectrometric (HG-AFS) detection of arsenite, arsenate, dimethylarsenic acid, and monomethylarsenic acid. These arsenic species were negatively charged in the sample solution with high pH. When the potential was applied to the electrophoretic capillary, the negatively charged analyte ions moved faster and stacked at the boundary of sample and CE buffer with low pH. So, high sample pH in combination with low buffer pH allowed the injection of large sample volumes (approximately 1100 nL). Comparison of the preconcentration of analyte solution, prepared with doubly deionized water and that prepared with lake or river water, indicated that preconcentration was independent on the original matrix. With injection of approximately 1100 nL sample, an enrichment factor of 37-50-fold was achieved for the four species. Detection limits for the four arsenic species ranged from 5.0 to 9.3 microg.L(-1). Precisions (RSDs, n = 5) were in the range of 4.9-6.7% for migration time, 4.7-11% for peak area, and 4.3-7.1% for peak height, respectively. The recoveries of the four species in locally collected water solution spiked with 0.1 microg.mL(-1) (as As) ranged from 83 to 109%.  相似文献   

18.
Summary Difficulties encountered in the gas or liquid chromatographic analysis of nicotine and other alkaloids in tobacco are largely due to the ionic character of these compounds. The potential of using capillary electrophoresis (CE) as an alternative analytical tool to eliminate these problems was evaluated. Parameters including electroosmotic flow, ionic forms of the analytes, buffer composition and applied voltage were studied using nicotine as a model compound. Ionic forms and electrophoretic mobility, as well as UV absorbance, of nicotine were controlled by varying the pH of an aqueous buffer solution. Thus the separation was optimized based on the characters of alkaloids and the nature of capillary electrophoresis. For tobacco samples in which nicotine accounts for more than 98% of the total alkaloid content, a quick method for the determination of nicotine in an aqueous tobacco extract within 100 seconds can be achieved.  相似文献   

19.
A thermally pyrolyzed poly(dimethylsiloxane) (PDMS) coating intended to prevent surface adsorption during capillary electrophoretic (CE) [Science 222 (1983) 266] separation of proteins, and to provide a substrate for surfactant adsorption for electroosmotic mobility control was prepared and evaluated. Coating fused-silica capillaries or glass microchip CE devices with a 1% solution of 100 cSt silicone oil in CH2Cl2, followed by forced N2 drying and thermal curing at 400 degrees C for 30 min produced a cross-linked PDMS layer. Addition of 0.01 to 0.02% Brij 35 to a 0.020 M phosphate buffer gave separations of lysozyme, cytochrome c, RNase, and fluorescein-labeled goat anti-human IgG Fab fragment. Respective plates/m typically obtained at 20 kV (740 V cm(-1)) were 2, 1.5, 1.25, and 9.4-10(5). In 50 mM ionic strength phosphate, 0.01% Brij 35 running buffer, the electroosmotic flow observed was about 25% of that in a bare capillary, and showed no pH dependence between pH 6.3-8.2. Addition of sodium dodecylsulfate (SDS) or cetyltrimethylammonium bromide (CTAB) to this running buffer allowed ready control of electroosmotic mobility, mu(eo). Concentrations of SDS between 0.005 to 0.1% resulted in mu(eo) ranging from 3 to 5 x 10(-4) cm2 V(-1) s(-1). Addition of 1 to 2.3 x 10(-4)% (2.7-6.3 microM) CTAB caused flow reversal. CTAB concentrations between 3.5 x 10(-4) and 0.05% (0.0014-1.37 mM) allowed control of mu(eo) between -1 x 10(-4) and -5.0 x 10(-4) cm2 V(-1) s(-1). For both surfactants the added presence of 0.01% Brij 35 provided slowly varying changes in mu(eo) with charged surfactant concentration.  相似文献   

20.
Ionic liquids as electrolytes for nonaqueous capillary electrophoresis   总被引:2,自引:0,他引:2  
Acetonitrile is a well-suited medium for nonaqueous capillary electroseparations and enables extending the range of applications of capillary electrophoresis (CE) techniques to more hydrophobic species. In this study, the dialkylimidazolium-based low temperature melting organic salts know as "ionic liquids" (ILs) are used as electrolytes. At room temperature these liquids are miscible with acetonitrile which makes it easy to use them for adjustment of analyte mobility and separation. The anionic part as well as the concentration of an IL influence the general electrophoretic mobility of the buffer system. The separation of different analytes is achieved because they become charged in the presence of ILs in separation media. There is also a possibility for a complex formation between the solute and the electrolyte which alters the mobility of the solute. A selected application of separations of phenols and aromatic acids will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号