首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Koval D  Kasicka V  Zusková I 《Electrophoresis》2005,26(17):3221-3231
The effect of ionic strength of the background electrolyte (BGE) composed of tris(hydroxymethyl)aminomethane (Tris) and acetic acid on the electrophoretic mobility of mono-, di- and trivalent anions of aliphatic and aromatic carboxylic and sulfonic acids was investigated by capillary zone electrophoresis (CZE). Actual ionic mobilities of the above anions were determined from their CZE separations in Tris-acetate BGEs of pH 8.1 to 8.2 in the 3 to 100 mM ionic strength interval at constant temperature (25 degrees C). It was found that the ionic strength dependence of experimentally determined actual ionic mobilities does not follow the course supposed by the classical Onsager theory. A steeper decrease of actual ionic mobilities with the increasing ionic strength of BGE and a higher estimated limiting mobility of the anions than that found in the literature could be attributed to the specific behavior of the Tris-acetate BGEs. Presumably, not only a single type of interaction of anionic analytes with BGE constituents but rather the combination of effects, such as ion association or complexation equilibria, seems to be responsible for the observed deviation of the concentration dependence of the actual ionic mobilities from the Onsager theory. Additionally, several methods for the determination of limiting ionic mobilities from CZE measured actual ionic mobilities were evaluated. It turned out that the determined limiting ionic mobilities significantly depend on the calculation procedure used.  相似文献   

2.
The free solution mobilities of the adenosine nucleotides 5'-adenosine triphosphate (ATP), 5'-adenosine diphosphate (ADP), 5'-adenosine monophosphate (AMP), and 3'-5'-cyclic AMP (cAMP) have been measured in diethylmalonate buffers containing a wide variety of monovalent cations. The mobilities of all nucleotides increase gradually with the increase in intrinsic conductivity of the cation in the BGE. However, at a given conductivity, the mobilities observed for ATP, ADP, and AMP in BGEs containing alkali metal ions and other cations are lower than these observed in BGEs containing tetraalkylammonium ions. Since the mobility of cAMP is independent of the cation in the BGE, the results suggest that the relatively low mobilities observed for ATP, ADP, and AMP in BGEs containing cations other than a tetraalkylammonium ion are due to cation binding, reducing the effective net charge of the nucleotide and thereby reducing the observed mobility. To measure the binding quantitatively, the mobilities of the nucleotides were measured as a function of ionic strength. The mobilities of ATP, ADP, and AMP decrease nonlinearly with the square root of ionic strength (I(1/2)) in BGEs containing an alkali metal ion or Tris(+). By contrast, the mobilities decrease linearly with I(1/2) in BGEs containing a nonbinding quaternary ammonium ion, as expected from Debye-Hückel-Onsager (DHO) theory. The mobility of cAMP, a nonbinding analyte, decreases linearly with I(1/2), regardless of the cation in the BGE. Hence, a nonlinear decrease of the mobility of an analyte with I(1/2) appears to be a hallmark of counterion binding. The curved mobility profiles observed for ATP, ADP, and AMP in BGEs containing an alkali metal ion or Tris(+) were analyzed by nonlinear curve fitting, using difference mobility profiles to correct for the effect of the physical properties of BGE on the observed mobilities. The calculated apparent dissociation constants range from 22 to 344 mM, depending on the particular cation-nucleotide pair. Similar values have been obtained by other investigators, using different methods. Interestingly, Tris(+) and Li(+) bind to the adenosine nucleotides with approximately equal affinities, suggesting that positively charged Tris(+) buffer ions can compete with alkali metal ions in Tris-buffered solutions.  相似文献   

3.
Horká M  Slais K 《Electrophoresis》2000,21(14):2814-2827
The asymmetric triangle (fronting or tailing) concentration profiles and their broadening are the typical results of the electromigrational zone dispersion characterizing a system of the analyte in the background electrolyte (BGE). The present contribution suggests the parameter named the relative velocity slope, SBGE,X, which was introduced here as a quantity characterizing the peak broadening and the asymmetry. SBGE,X VS. analyte ionic mobility diagrams are suitable for the comparison of BGEs of given pH and the conductivity composed of electrolytes of different pKaS and ionic mobilities. The concept of SBGE,X diagrams is verified by capillary zone electrophoresis of the model analytes, which involve (i) the series of sulfobenzoylated poly(ethylene glycols) as examples of the strong electrolytes with different ionic mobilities and (ii) the series of monobasic phenols as weak electrolytes with different pKaS and similar ionic mobilities. It follows from both theoretical predictions of peak symmetry and their experimental verification that the optimum composition of BGEs is determined mostly by the suitable ionic mobility of the coion in dependence on the ionic mobility of the analyte. The low-conductivity BGEs based on low-molecular carrier ampholytes are at best only comparable with the properly chosen monobasic electrolytes.  相似文献   

4.
Thermodynamic acidity constants and limiting ionic mobilities were determined for polyprotic non-chromophore analytes using capillary electrophoresis with capacitively coupled contactless conductivity detection. It was not necessary to work with buffers of identical ionic strength as ionic strength effects on effective electrophoretic mobilities were corrected by modeling during data evaluation (software AnglerFish). The mobility data from capillary electrophoresis coupled to conductivity detection were determined in the pH range from 1.25 to 12.02 with a high resolution (36 pH steps). With this strategy, thermodynamic acidity constants and limiting ionic mobilities for various acidic herbicides were determined, sometimes for the first time. The model analytes included glyphosate, its metabolites, and its acetylated derivates (aminomethyl phosphonic acid, glyoxylic acid, sarcosine, glycine, N-acetyl glyphosate, N-acetyl aminomethyl phosphonic acid, hydroxymethyl phosphonic acid). The obtained data were used in simulations to optimize separations by capillary electrophoresis. Simulations correlated very well to experimental results. With the new method, the separation of glyphosate from interfering components like phosphate in beer samples was possible.  相似文献   

5.
Phosphinic pseudopeptides (i.e., peptide isosteres with one peptide bond replaced by a phosphinic acid moiety) were analyzed and physicochemically characterized by capillary zone electrophoresis in the pH range of 1.1-3.2, employing phosphoric, phosphinic, oxalic and dichloroacetic acids as background electrolyte (BGE) constituents. The acid dissociation constant (pK(a)) of phosphinate group in phosphinic pseudopeptides and ionic mobilities of these analytes were determined from the pH dependence of their effective electrophoretic mobilities corrected to standard temperature and constant ionic strength of the BGEs. It was shown that these corrections are necessary whenever precise mobility data at very low pH are to be determined. Additionally, it was found that the ionic mobilities of the phosphinic pseudopeptides and pK(a) of their phosphinate group are affected by the BGE constituent used. The variability of migration behavior of the pseudopeptides can be attributed to their ion-pairing formation with the BGE components.  相似文献   

6.
Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.  相似文献   

7.
Ionic electrophoretic mobilities determined by means of CE experiments are sometimes different when compared to generally accepted values based on limiting ionic conductance measurements. While the effect of ionic strength on electrophoretic mobility has been long understood, the increase in the mobility that results from Joule heating (the resistive heating that occurs when a current passes through an electrolyte) has been largely overlooked. In this work, a simple method for obtaining reliable and reproducible values of electrophoretic mobility is described. The electrophoretic mobility is measured over a range of driving powers and the extrapolation to zero power dissipation is employed to eliminate the effect of Joule heating. These extrapolated values of electrophoretic mobility can then be used to calculate limiting ionic mobilities by making a correction for ionic strength; this somewhat complicated calculation is conveniently performed by using the freeware program PeakMaster 5. These straightforward procedures improve the agreement between experimentally determined and literature values of limiting ionic mobility by at least one order of magnitude. Using Tris-chromate BGE with a value of conductivity 0.34 S/m and ionic strength 59 mM at a modest dissipated power per unit length of 2.0 W/m, values of mobility for inorganic anions were increased by an average of 12.6% relative to their values free from the effects of Joule heating. These increases were accompanied by a reduction in mobilities due to the ionic strength effect, which was 11% for univalent and 28% for divalent inorganic ions compared to their limiting ionic mobilities. Additionally, it was possible to determine the limiting ionic mobility for a number of aromatic anions by using PeakMaster 5 to perform an ionic strength correction. A major significance of this work is in being able to use CE to obtain reliable and accurate values of electrophoretic mobilities with all its benefits, including understanding and interpretation of physicochemical phenomena and the ability to model and simulate such phenomena accurately.  相似文献   

8.
Capillary zone electrophoresis in untreated fused silica capillaries has proved suitable for the determination of the ionization constants of weak electrolytes. Several fundamental equations relating the electrophoretic mobilities of ionized solutes to hydronium ion concentrations in the running electrolyte have been verified experimentally. The observed dependence of the electrophoretic mobilities of weak bases and ampholytes on the pH of the electrolyte showed good agreement with predicted behavior. The pKa values calculated from electrophoretic mobility data obtained by capillary zone electrophoresis were reasonably close to those reported in the literature.  相似文献   

9.
Fourteen low molecular mass UV absorbing ampholytes containing 1 or 2 weakly acidic and 1 or 2 weakly basic functional groups that best satisfy Rilbe's requirement for being good carrier ampholytes (ΔpKa = pKamonoanion ‒ pKamonocation < 2) were selected from a large group of commercially readily available ampholytes in a computational study using two software packages (ChemSketch and SPARC). Their electrophoretic mobilities were measured in 10 mM ionic strength BGEs covering the 2 < pH < 12 range. Using our Debye-Hückel and Onsager-Fuoss laws-based new software, AnglerFish (freeware, https://echmet.natur.cuni.cz/software/download ), the effective mobilities were recalculated to zero ionic strength from which the thermodynamic pKa values and limiting ionic mobilities of the ampholytes were directly calculated by Henderson-Hasselbalch equation-type nonlinear regression. The tabulated thermodynamic pKa values and limiting ionic mobilities of these ampholytes (pI markers) facilitate both the overall and the narrow-segment characterization of the pH gradients obtained in IEF in order to mitigate the errors of analyte ampholyte pI assignments caused by the usual (but rarely proven) assumption of pH gradient linearity. These thermodynamic pKa and limiting mobility values also enable the reality-based numeric simulation of the IEF process using, for example, Simul (freeware, https://echmet.natur.cuni.cz/software/download ).  相似文献   

10.
A CE method was used for the determination of acidity constants (pK(a)) of a series of ten phosphinic pseudopeptides, which varied in number and type of ionogenic groups. Effective electrophoretic mobilities were measured in the 1.8-12.0 pH range in the BGEs of constant ionic strength of 25 mM. Effective electrophoretic mobilities, corrected to standard temperature of 25 degrees C, were subjected to non-linear regression analysis and the obtained apparent pK(a) values were recalculated to thermodynamic pK(a)'s by extrapolation to zero ionic strength according to the extended Debye-Hückel model. The pK(a) values of the phosphinic acid group fell typically in the 1.5-2.25 interval, C-terminal carboxylic groups in the 2.94-3.50 interval, carboxylic groups of the lateral chain of glutamate and aspartate in the 4.68-4.97 interval, imidazolyl moiety of histidine in the 6.55-8.32 interval, N-terminal amino groups in the 7.65-8.28 interval and epsilon-amino group of the lateral chain of lysine in the 10.46-10.61 interval. Further, separation of diastereomers of the phosphinic pseudopeptides was investigated in achiral BGEs. Evaluation of the resolution of the diastereomers as a function of pH of the BGE revealed that most suitable pH region for separation of the diastereomers is around the pK(a) values of the central phosphinic acid group of the pseudopeptides. Successful separation of some diastereomers was, however, achieved in the neutral and alkaline BGEs as well.  相似文献   

11.
Carbon nanoparticles obtained from the flame of an oil lamp were examined by means of capillary electrophoresis. The influence of buffer composition on the separation of the mixture of negatively charged carbon nanoparticles was studied by varying buffer selection, pH, and concentration. The electrophoretic pattern was affected by both the co- and counter-ion in the buffer solution, influencing selectivity and peak shape. The capillary electrophoretic separations at different pH revealed species with large electrophoretic mobilities under a wide range of pH. The mobility of selected species in the mixture of nanoparticles showed a strong dependence upon the solution ionic strength. The mobility of these nanoparticles as a function of ionic strength was compared to classical electrokinetic theory, suggesting that under the experimental conditions utilized, the species are small, highly charged particles with appreciable zeta potentials, even at low pH.  相似文献   

12.
The number of charges and/or organic ligands covalently attached to the surface of CdTe quantum dot nanoparticles has been determined from their electrophoretic mobilities measured in capillaries filled with free electrolyte buffers. Three sizes of water soluble CdTe quantum dots with 3‐mercaptopropionic and thioglycolic acids as surface ligands were prepared. Their electrophoretic mobilities in different pH and ionic strength values of separation buffers were measured by capillary electrophoresis with laser induced fluorescence detection. The ζ‐potentials determined from electrophoretic mobilities using analytical solution of Henry function proposed by Ohshima were in the range from ?30 to ?100 mV. Charges of QDs were calculated from ζ‐potentials. As a result, numbers of organic ligands bonded to QDs surface were determined to be 13, 14, and 15 for the sizes of 3.1, 3.5, and 3.9 nm, respectively. The dissociation constants of organic ligands bonded on QDs surfaces estimated from the dependence of QDs charge on pH of the separation buffer were 7.8 and 7.9 for 3‐mercaptopropionic acid and 6.9 for thioglycolic acid.  相似文献   

13.
Electrolyte composition is critical in optimizing separation and detection of ions by capillary electrophoresis. The parameters which must be considered when designing an electrolyte system for capillary electrophoresis include electrophoretic mobility of electrolyte constituents and analytes, detection mode, and compatibility of electrolyte constituents with one another. An electrolyte system based on pyromellitic acid is well suited for use with indirect photometric detection, and provides excellent separations of anions. The ability to modify the electrophoretic mobility of pyromellitic acid as a function of ph provides flexibility in matching electrophoretic mobilities of analytes. Additionally, the use of alkyl amines as electroosmotic flow modifiers allows the rapid separation of anions by reversing the direction of electroosmotic flow in a fused-silica capillary. The optimization of a capillary electrophoresis electrolyte for anion analysis is also discussed in terms of pH, ionic strength and applied voltage. The effect of organic solvent on separation selectivity is also discussed.  相似文献   

14.
The binding constant determination of uranyl with small‐molecule ligands such as citric acid could provide fundamental knowledge for a better understanding of the study of uranyl complexation, which is of considerable importance for multiple purposes. In this work, the binding constant of uranyl–citrate complex was determined by ACE. Besides the common single‐injection method, a multi‐injection method to measure the electrophoretic mobility was also applied. The BGEs used contained HClO4 and NaClO4, with a pH of 1.98 ± 0.02 and ionic strength of 0.050 mol/L, then citric acid was added to reach different concentrations. The electrophoretic mobilities of the uranyl–citrate complex measured by both of the two methods were consistent, and then the binding constant was calculated by nonlinear fitting assuming that the reaction had a 1:1 stoichiometry and the complex was [(UO2)(Cit)]?. The binding constant obtained by the multi‐injection method was log K = 9.68 ± 0.07, and that obtained by the single‐injection method was log K = 9.73 ± 0.02. The results provided additional knowledge of the uranyl–citrate system, and they demonstrated that compared with other methods, ACE using the multi‐injection method could be an efficient, fast, and simple way to determine electrophoretic mobilities and to calculate binding constants.  相似文献   

15.
Nzeadibe K  Vigh G 《Electrophoresis》2007,28(15):2589-2605
The dichloride salt of mono-6-deoxy-6-N,N,N',N',N'-pentamethylethylenediammonio-cyclomaltoheptaose (PEMEDA-BCD), the first single-isomer, monosubstituted, permanently dicationic beta-CD has been synthesized, analytically characterized, and used for the capillary electrophoretic separation of the enantiomers of a group of analytes in acidic and basic BGEs. When the concentration of PEMEDA-BCD was changed in the BGEs, the resulting effective mobilities of the analytes and the respective separation selectivities followed the predictions of the ionic strength-corrected charged resolving agent migration model. Good separation selectivities and favorable normalized EOF mobilities allowed for the rapid, efficient separation of the enantiomers of anionic, weak acid and nonionic analytes in the low- and/or high-pH BGEs.  相似文献   

16.
A theoretical model to explain the observed mobility of inorganic anions in capillary electrochromatography (CEC) using ion-exchange (IE) stationary phases has been derived. The model divides contributions to the observed mobility of an analyte ion into capillary electrophoretic (CE) and IE components. The CE component includes the influence of varying the ionic strength of the background electrolyte on the electrophoretic mobility of the analyte, while the IE component accounts for the variation in retention of the analyte ion caused by changing the composition of the background electrolyte. The model was verified using a mixture of UV-absorbing inorganic ions in electrolytes of differing eluotropic strength in both packed and open-tubular CEC systems, with excellent agreement (r2 > 0.98) for both systems. Values of constants in the model equation determined by nonlinear regression were used to estimate the relative strengths of the interactions of different analytes with the stationary phase and these were found to agree well with elution orders observed in conventional IE chromatography.  相似文献   

17.
The electrophoretic mobilities of three beta-blocker drugs, practolol, timolol and propranolol, have been measured in electrolyte systems with mixed binary and ternary water-methanol-ethanol solvents with acetic acid/sodium acetate as buffer using capillary electrophoresis. The highest mobilities for the analytes studied have been observed in pure aqueous, the lowest values in ethanolic buffers. The measured electrophoretic mobilities have been used to evaluate the accuracy of a mathematical model based on a mixture response surface method that expresses the mobility as a function of the solvent composition. Mean percentage error (MPE) has been computed considering experimental and calculated mobilities as an accuracy criterion. The obtained MPE for practolol, timolol and propranolol in the binary mixtures are between 0.9 and 2.6%, in the ternary water-methanol-ethanol solvent system the MPE was about 2.7%. The MPE values resulting from the proposed equation lie within the experimental relative standard deviation values and can be considered as an acceptable error.  相似文献   

18.
19.
GENTRANS, a comprehensive one-dimensional dynamic simulator for electrophoretic separations and transport, was extended for handling electrokinetic chiral separations with a neutral ligand. The code can be employed to study the 1:1 interaction of monovalent weak and strong acids and bases with a single monovalent weak or strong acid or base additive, including a neutral cyclodextrin, under real experimental conditions. It is a tool to investigate the dynamics of chiral separations and to provide insight into the buffer systems used in chiral capillary zone electrophoresis (CZE) and chiral isotachophoresis. Analyte stacking across conductivity and buffer additive gradients, changes of additive concentration, buffer component concentration, pH, and conductivity across migrating sample zones and peaks, and the formation and migration of system peaks can thereby be investigated in a hitherto inaccessible way. For model systems with charged weak bases and neutral modified β-cyclodextrins at acidic pH, for which complexation constants, ionic mobilities, and mobilities of selector-analyte complexes have been determined by CZE, simulated and experimentally determined electropherograms and isotachopherograms are shown to be in good agreement. Simulation data reveal that CZE separations of cationic enantiomers performed in phosphate buffers at low pH occur behind a fast cationic migrating system peak that has a small impact on the buffer composition under which enantiomeric separation takes place.  相似文献   

20.
Lalwani S  Tutu E  Vigh G 《Electrophoresis》2005,26(13):2503-2510
Ampholytes with close pK(a) values (i.e., good carrier ampholytes (CAs)) are needed as buffers in pH-biased isoelectric trapping (IET) separations. The syntheses of two families of such good CAs were reported recently. Members of the family of diamino sulfate ampholytes (first series) had pI values in the 5.7 < pI < 9.0 range. Members of the family of quaternary ammonium dicarboxylic acid ampholytes (second series) had pI values in the pI < 4.3 range. To further characterize the diamino sulfate ampholytes, their effective mobilities were measured by indirect UV-absorbance detection capillary electrophoresis in a series of background electrolytes (BGEs) with different pH values. The pK(a) and limiting ionic mobility values of the CAs were obtained by fitting these mobility values, as a function of the pH and the ionic strength of the BGEs, to the theoretical mobility expression. These diamino sulfates complete the list of CAs suitable for IET separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号