首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that Rh‐catalyzed reaction of propargylic alcohols with aryl metallic reagents undergoes SN2’‐type reaction affording allenes via a sequential arylmetalation and β‐OH elimination process. Here we report a Rh/Ag‐cocatalyzed reaction of propargylic alcohols with organoboronic acids affording stereo‐defined (E)‐3‐arylallylic alcohols via arylmetalation and protodemetalation with a high regio‐ and stereoselectivity under very mild conditions. The reaction exhibits a good substrate scope and the compatibility with synthetically useful functional groups with no racemization for optically active propargylic alcohols. Such a reaction may also be extended to homopropargylic alcohols with a remarkable regioselectivity and exclusive E‐stereoselectivity.  相似文献   

2.
A highly stereoselective route to the polysubstituted chiral octahydrobenzofuran 12 , a potential synthon for the E‐ring core in the (?)reserpine synthesis, is described. The α‐bromo acetal 11 was obtained from inexpensive (?)‐shikimic acid ( 3 ) through a series of highly stereoselective chemical reactions (Scheme). Et3B/Bu3SnH‐Mediated intramolecular radical cyclization of 11 led to compound 12 with the required configuration.  相似文献   

3.
Group selectivity in the allylation of mixed (n‐butyl)(phenyl)zinc reagent can be controlled by changing reaction parameters. CuCN‐catalyzed allylation in tetrahydrofuran (THF)–hexamethylphosphoric triamide is n‐butyl selective and also γ‐selective in the presence of MgCl2, whereas CuI‐catalyzed allylation in THF in the presence of n‐Bu3P takes place with a n‐butyl transfer:phenyl transfer ratio of 23:77 and an α:γ transfer ratio of phenyl of 76:24. NiCl2(Ph3P)2‐catalyzed allylation in the presence of LiCl is phenyl selective with an α:γ ratio of 65:35. The reaction of methyl‐ or n‐butyl(aryl)zinc reagents with an allylic electrophile in THF at room temperature in the presence of NiCl2(Ph3P)2 catalyst and LiCl as an additive provides an atom‐economic alternative to aryl–allyl coupling using diarylzincs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The stereoselective direct transformation of N‐(propargylic)hydroxylamines into cis‐2‐acylaziridines was achieved by the combined use of AgBF4 and CuCl. Copper salts were found to promote the transformation of the intermediary 4‐isoxazolines into 2‐acylaziridines and both 3‐aryl‐ and 3‐alkyl‐substituted 2‐acylaziridines could be prepared by using this method. Furthermore, subsequent 1,3‐dipolar cycloaddition of azomethine ylides that were generated in situ from the intermediary 2‐acylaziridines with maleimides was achieved in a stereoselective one‐pot procedure to afford the corresponding 2‐acylpyrrolidines, which consisted of an octahydropyrrolo[3,4‐c]pyrrole skeleton.  相似文献   

5.
One‐ and two‐electron oxidation of a digallene stabilized by an N‐heterocyclic carbene afforded the first stable gallium‐based radical cation and dication salts, respectively. Structural analysis and theoretical calculations reveal that the oxidation occurs at the Ga=Ga double bond, leading to removal of π electrons of the double bond and a decrease of the bond order. The spin density of the radical cation mainly locates at the two gallium centers as demonstrated by EPR spectroscopy and theoretical calculations. Moreover, the reactivity of the radical cation salt toward nBu3SnH and cyclo‐S8 was studied; a digallium–hydride cation salt containing a Ga?Ga single bond and a gallium sulfide cluster bearing an unprecedented ladder‐like Ga4S4 core structure were obtained, respectively.  相似文献   

6.
Hydrostannations of primary propargylic alcohols with Bu3SnH catalyzed by Pd(PPh3)2 yield (E) allylic alcohols in which the Bu3Sn group is affixed to the carbon proximal to the CH2OH substituent, suggestive of an OH directing effect. Hydrostannations of the related propargylic acetates show no such effect.  相似文献   

7.
A one‐pot synthesis of 3,4,5‐ and 1,3,5‐pyrazoles from tertiary propargylic alcohols and para‐tolylsulfonohydrazide has been accomplished. The pyrazoles are formed through a four‐step cascade sequence, including FeCl3‐catalyzed propargylic substitution, aza‐Meyer–Schuster rearrangement, base‐mediated 6π electrocyclization, and thermal [1,5] sigmatropic shift. In this reaction, the 3,4,5‐ and 1,3,5‐pyrazoles are produced selectively according to different substituents in the starting alcohols.  相似文献   

8.
An efficient nickel(0)‐catalyzed highly regio‐ and stereoselective hydrocarboxylation of homopropargylic alcohols with ZnEt2 in the presence of CO2 (1 atm, balloon) to synthesize α‐alkylidene‐γ‐butyrolactones is described. The catalyst is highly active and can be applied for the synthesis of (optically active) mono‐ or bicyclic α‐alkylidene‐γ‐butyrolactones with excellent regio‐ and stereoselectivity and good functional group tolerance. The potential of the reaction has been demonstrated in the first synthesis of (±)‐heteroplexisolide E.  相似文献   

9.
New Cs‐symmetric aryl 1,4‐diphosphine ligands were synthesized and tested in the copolymerization of carbon monoxide and propene. The electronic properties of the two different P‐atoms did not affect the high enantioselectivity of the catalyst precursors, thus resulting in high ‘regio’‐ and ‘stereoregular’ copolymers.  相似文献   

10.
The synthesis of 3‐heteroaryl‐substituted tetrahydrofurans from the propargyl derivative of Baylis–Hillman adducts of heteroaryl aldehydes by n‐Bu3SnH‐mediated 5‐exo‐trig vinyl radical cyclization in high yield is reported.  相似文献   

11.
2‐(2‐Cyanoethyl)aziridines and 2‐aryl‐3‐(2‐cyanoethyl)aziridines were deployed as substrates for an In(OTf)3‐mediated regio‐ and stereoselective ring rearrangement upon treatment with LiAlH4, affording a variety of novel 2‐(aminomethyl)pyrrolidines and 3‐aminopiperidines, respectively. Further synthetic elaboration of the obtained 3‐aminopiperidines resulted in the formation of a peculiar and unexplored conformationally constrained imidazolidinone and diketopiperazine scaffold.  相似文献   

12.
cis,cis,cis‐1,2,3,4‐Tetrakis(diphenylphosphinomethyl)cyclopentane–[PdCl(C3H5)]2 efficiently catalyses the Heck reaction of alk‐1‐en‐3‐ol with a variety of aryl halides. In the presence of hex‐1‐en‐3‐ol or oct‐1‐en‐3‐ol, the β‐arylated carbonyl compounds were selectively obtained. Turnover numbers up to 84 000 can be obtained for this reaction. Linalool and 2‐methylbut‐3‐en‐2‐ol led regio‐ and stereoselectively to the corresponding (E)‐1‐arylalk‐1‐en‐3‐ol derivatives. A minor electronic effect of the substituents of the aryl bromide was observed. Quite similar reaction rates were generally observed in the presence of activated aryl bromides such as bromoacetophenone and deactivated aryl bromides such as bromoanisole, indicating that, with these alkenols and this catalyst, the oxidative addition of aryl bromides to palladium is not the rate‐limiting step. It should be noted that this reaction also proceeds with sterically very congested aryl bromides such as 9‐bromoanthracene or 2,4,6‐triisopropylbromobenzene or with a vinyl bromide. On the other hand, low yields were obtained with aryl chlorides. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The asymmetric addition of terminal ynamides to trifluoromethyl ketones with a readily available chiral zinc catalyst gives CF3‐substituted tertiary propargylic alcohols in up to 99 % yield and 96 % ee. The exclusion of organozinc additives and base as well as the general synthetic utility of the products are key features of this reaction. The value of the β‐hydroxy‐β‐trifluoromethyl ynamides is exemplified by selective transformations to chiral Z‐ and E‐enamides, an amide, and N,O‐ketene acetals. The highly regioselective hydration, stereoselective reduction, and hydroacyloxylation reactions proceed with high yields and without erosion of the ee value of the parent β‐hydroxy ynamides.  相似文献   

14.
A broad range of tertiary propargylic alcohols were kinetically resolved by catalyst‐controlled enantioselective silylation. This non‐enzymatic kinetic resolution is catalyzed by a Cu?H species and makes use of the commercially available precatalyst MesCu/(R,R)‐Ph‐BPE and a simple hydrosilane as the resolving reagent. Both alkyl,aryl‐ as well as dialkyl‐substituted propargylic alcohols participate, and especially high selectivity factors are achieved when the alkyne terminus carries a TIPS group, which also enables facile post‐functionalization in this position (s up to 207).  相似文献   

15.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

16.
Direct thermally induced reactions between rare earth metals (Ln = Y,Ce, Dy, Ho, and Er) activated by Hg metal and 3,5‐diphenylpyrazole (Ph2pzH) or 3,5‐di‐tert‐butylpyrazole (tBu2pzH) yielded either homoleptic complexes [Lnn(R2pz)3n] or a heteroleptic complex [Ln(Ph2pz)3(Ph2pzH)2] From Ph2pzH, [Ce3(Ph2pz)9], [Dy2(Ph2pz)6], [Ho2(Ph2pz)6], and [Y(Ph2pz)3(Ph2pzH)2] were isolated. The first has a bowed trinuclear Ce3 backbone with two η2 pyrazolate ligands on the terminal metal atoms and one on the middle, and bridging by both μ‐η22 and μ‐η25 ligands between the terminal and the central Ce atoms. Although both the Dy and Ho complexes are dinuclear, the former has the rare μ‐η21 bridging whilst the latter has μ‐η22 bridging. Thus the dysprosium complex is seven‐coordinate and the holmium is eight‐coordinate, in contrast to any correlation with Ln3+ ionic radii, and the series has a remarkable structural discontinuity. The heteroleptic Y complex is eight coordinate with three chelating Ph2pz and two transoid unidentate Ph2pzH ligands. From tBu2pzH, dimeric [Ln2(tBu2pz)4] (Ln = Ce, Er) were isolated and are isomorphous with eight coordinate Ln atoms ligated by two chelating terminal tBu2pz and two μ‐η22 tBu2pz donor groups. They are also isomorphous with previously reported La, Nd, Yb, and Lu complexes.  相似文献   

17.
Oxiranes and aziridines efficiently undergo ring opening with bismuth nitrate at room temperature to furnish the corresponding β‐(nitrooxy)‐substituted alcohols and amines respectively. The conversions are highly regio‐ and stereoselective and afford the nitrooxy‐compounds in excellent yields within a short period of time.  相似文献   

18.
Diastereoselective synthesis of a variety of benzothiazole sulfonyl ethyl C‐glycosides has been developed by a radical mediated approach on the reaction of glycosyl bromides and benzothiazolyl vinyl sulfone in the presence of n‐Bu3SnH and AIBN in good yields.  相似文献   

19.
In contrast to all other transition‐metal‐catalyzed hydrostannation reactions documented in the literature, the addition of Bu3SnH across various types of alkynes proceeds with excellent trans selectivity, provided the reaction is catalyzed by [Cp*Ru]‐based complexes. This method is distinguished by a broad substrate scope and a remarkable compatibility with functional groups, including various substituents that would neither survive under the conditions of established Lewis acid mediated trans hydrostannations nor withstand free‐radical reactions. In case of unsymmetrical alkynes, a cooperative effect between the proper catalyst and protic functionality in the substrate allows outstanding levels of regioselectivity to be secured as well.  相似文献   

20.
The unique reactive intermediate formed in the 3,4,6‐tri‐O‐benzyl‐d‐glucal–TfOH (triflic acid)–n‐Bu4NI reaction system (in dichloromethane) reacted with nucleophiles in a regio‐ and stereoselective manner. These selectivities resulted in hitherto unknown compounds, such as benzyl 4,6‐di‐O‐benzyl‐2,3‐dideoxy‐3‐iodo‐α‐glucopyranoside, which was obtained in the presence of an iodide ion as a nucleophile. The corresponding 2‐deoxy α‐glycosides were obtained exclusively in the corresponding reaction with hydroxylic nucleophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号