首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organic/inorganic hybrid nanomaterials containing silica nanoparticles are synthesized by sol-gel crosslinking process. The tetraethoxysilane (TEOS) and γ-aminopropyltriethoxylsilane as coupling agents are used as a precursor. The 2,4,6-tri [(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) as crosslinking agent is used to form covalent bonds among the inorganic nanoparticles. The chemical and morphological structures of the organic/inorganic hybrid are characterized with FTIR spectra, 29Si-NMR, x-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic force microscope (AFM). The results show that the organic/inorganic hybrid forms covalent bond between the inorganic nanoparticle and Tri-EBAC. The network organic/inorganic hybrid can form good film with even nanometer particles. The network organic/inorganic hybrids nanomaterial not only exhibits the thermal properties of inorganic compounds, but also exhibits the thermal properties of organic polymer.  相似文献   

2.
In this work, different poly (lactic acid) (PLA)-based nanocomposite electrospun fibers, reinforced with both organic and inorganic nanoparticles, were obtained. As organic fibers, cellulose nanocrystals, CNC, both neat and functionalized by “grafting from” reaction, chitosan and graphene were used; meanwhile, hydroxyapatite and silver nanoparticles were used as inorganic fibers. All of the nanoparticles were added at 1 wt% with respect to the PLA matrix in order to be able to compare their effect. The main aim of this work was to study the morphological, thermal and mechanical properties of the different systems, looking for differences between the effects of the addition of organic or inorganic nanoparticles. No differences were found in either the glass transition temperature or the melting temperature between the different electrospun systems. However, systems reinforced with both neat and functionalized CNC exhibited an enhanced degree of crystallinity of the electrospun fibers, by up to 12.3%. From a mechanical point of view, both organic and inorganic nanoparticles exhibited a decreased elastic modulus and tensile strength in comparison to neat electrospun PLA fibers, improving their elongation at break. Furthermore, all of the organic and inorganic reinforced systems disintegrated under composting conditions after 35 days.  相似文献   

3.
Determining the microstructure in human cementum might help us design new kinds of replacement materials for the treatment of teeth injury and disease. The authors characterized the nanostructures in the cementum of health human teeth via scanning electronic microscopy(SEM). It was found that the acellular cementum is mainly composed of two kinds of nanostructures―inorganic nanoparticles and organic nanofibers. And the inorganic nanoparticles show a tendency to arrange along the organic nanofibers. Based on the micro-molding in capillary strategy, the distribution of organic component in acellular cementum was copied with UV curable resin. After removing the inorganic nanoparticles by acid etching, many isolated spindle shape nanopores were left in polymer, which su- ggested that the inorganic nanoparticles should have been isolated by the organic component in cementum, and should be oval or nanosheet in shape. We hope the present work could provide reference for the biomimetic preparation of tissue engineering materials, and help us design new types of tooth implant.  相似文献   

4.
Inorganic/organic nanocomposite systems, in which inorganic particles are encapsulated into the polymer matrix, are new classes of polymeric materials. These materials combine the properties of both components. It means that polymer component with excellent optical property, flexibility and toughness could improve the brittleness of inorganic particles and besides, inorganic particles could increase the strength and modulus of polymers. There are various methods to make these inorganic/organic nanocomposites. One of them is the chemical process, in which polymerization is performed directly in the presence of the inorganic particles. Examples of miniemulsion, suspension or dispersion polymerization can be found in the literature but emulsion polymerization is by far the technique most frequently used.In this work, latex containing nanostructure hybrid of copolymer (styrene, methyl methacrylate, acrylic acid) and inorganic nanoparticles (silica) with core/shell structure was prepared via semi-batch emulsion polymerization. At first, silica nanoparticles were dispersed in water phase in an ultrasound bath to prevent the aggregation of nanoparticles, and then emulsion polymerization was performed in the presence of silica nanoparticles. Related tests and analysis confirmed the success in synthesis of nanostructure hybrids. Induced coupled plasma (ICP) analysis and thermal gravimetric analysis (TGA) showed the presence and amount of silica nanoparticles in the final latex. Dynamic light scattering (DLS) analysis confirmed the presence of 25-35 nm particles in the system and transmission electron microscopy (TEM) showed the core/shell morphology of nanoparticles. It has been shown that with an appropriate surfactant, adjusting the pH of media, using suitable monomers and under controlled conditions, it would be possible to produce stable organic/inorganic composite nanoparticles with core/shell structure. In another attempt and in order to investigate the effect of compatiblizing system, styrene-methyl methacrylate was copolymerized in the presence of modified silica particles with oleic acid as the inorganic dispersed phase at the same condition. Similar characterizations were performed in order to have a worthwhile comparison. The results for the late procedure show the effect of oleic acid in formation of aggregates as the core for polymeric nanocomposite particles.  相似文献   

5.
ABSTRACT

Nanotechnology is an emerging field of science. The base of nanotechnology is nanoparticles. The size of nanoparticles ranges from 1 to 100?nm. The nanoparticles are classified into different classes such as inorganic nanoparticles, organic nanoparticles, ceramic nanoparticles and carbon base nanoparticles. The inorganic nanoparticles are further classified into metal nanoparticles and metal oxide nanoparticles.similarly carbon base nanoparticles classified into Fullerene, Carbon nanotubes, Graphene, Carbon nanofiber and carbon black Nanoparticles are also classified on the basis of dimension such as one dimension nanoparticles, two-dimension nanoparticles and three-dimension nanoparticles. The nanoparticles are synthesized by using two approaches like top-down approach and bottom-up approach. In this review chemical, physical and green synthesis of nanoparticles is reported. The synthesized nanoparticles are synthesized using different qualitative and quantitative techniques. The Qualitative techniques include Fourier Transform Infrared Spectroscopy (FT-IR), UV-Vis spectrophotometry, Scanning electron microscope (SEM), X.ray diffraction (XRD) and Atomic Force Microscopy (AFM). The Quantitative techniques include Transmission Electron Microscopy (TEM), Annular Dark-Field Imaging (HAADF) and Intracranial pressure (ICP). The nanoparticles have different application which is reported in this review.  相似文献   

6.
Structurally well-defined PMMA-grafted palygorskite nanoparticles were prepared by modifying the surface of palygorskite nanoparticles with initiators for reverse atom transfer radical polymerization (reverse ATRP) and by using these initiator-modified nanoparticles as macroinitiators. Reverse ATRP from palygorskite nanoparticles was then performed to attach well-defined polymer on to an inorganic core. It has been found that the dispersibility of palygorskite particles in organic solvents is significantly improved by grafting polymers onto the surface of palygorskite particles. The polymer-grafted palygorskite nanoparticles possess excellent decoloration capacity in organic solvents.  相似文献   

7.
This review discusses briefly the preparation, electrochemistry, and electrogenerated chemiluminescence (ECL) as well as spectroscopic properties of organic nanoparticles. Organic nanoparticles, ranging from several tens of nanometers to hundreds of nanometers in diameter, were successfully prepared by various methods. Using a simple reprecipitation method, organic nanoparticles of a very small size can be prepared and show unique electrochemical and ECL characteristics. As with inorganic nanoparticles, organic nanoparticles suggest possible applications, like labels for the analysis of biological materials with ECL.  相似文献   

8.
Confining organic molecules to the surfaces of inorganic nanoparticles can induce intermolecular interactions between them, which can affect the composition of the mixed self‐assembled monolayers obtained by co‐adsorption from solution of two different molecules. Two thiolated ligands (a dialkylviologen and a zwitterionic sulfobetaine) that can interact with each other electrostatically were coadsorbed onto gold nanoparticles. The nanoparticles favor a narrow range of ratios of these two molecules that is largely independent of the molar ratio in solution. Changing the solution molar ratio of the two ligands by a factor of 5 000 affects the on‐nanoparticle ratio of these ligands by only threefold. This behavior is reminiscent of the formation of insoluble inorganic salts (such as AgCl), which similarly compensate positive and negative charges upon crystallizing. Our results pave the way towards developing well‐defined hybrid organic–inorganic nanostructures.  相似文献   

9.

This review discusses briefly the preparation, electrochemistry, and electrogenerated chemiluminescence (ECL) as well as spectroscopic properties of organic nanoparticles. Organic nanoparticles, ranging from several tens of nanometers to hundreds of nanometers in diameter, were successfully prepared by various methods. Using a simple reprecipitation method, organic nanoparticles of a very small size can be prepared and show unique electrochemical and ECL characteristics. As with inorganic nanoparticles, organic nanoparticles suggest possible applications, like labels for the analysis of biological materials with ECL.

  相似文献   

10.
We report the effect of aluminum on the formation and structure of silica nanoparticles formed in basic solutions of small organic and inorganic cations using a combination of small-angle X-ray scattering, conductivity, pH, and 27Al NMR spectroscopy methods. At low silica concentrations, our observations agree with previous reports and show the formation of small oligomers ((HO)4-nAl(OSi(OH)3)n)- that can be modeled qualitatively using a simple aqueous speciation model. We also find that aluminum drastically reduces the concentration of silica at which nanoparticles are formed. Using organic cations, the particles are smaller than the ones observed in pure silica systems (1.5 nm vs approximately 3 nm diameter), but in the case of sodium cations, larger particles are detected ( approximately 10 nm in diameter). The data suggests that sodium cations are incorporated within the inorganic silica/alumina core, as opposed to organic cations that appear to be excluded from such clusters. Important insights are gained by making analogies to the behavior of mixed surfactant systems using regular solution theory and noting that the formation of Si-O-Al bonds (as measured by the DeltaGdegrees(rxn) of condensation) is much more favorable than the formation of Si-O-Si bonds.  相似文献   

11.
Microphase separated epoxy-based materials modified with an amphiphilic poly(styrene-block-ethylene oxide) diblock copolymer (PS-b-PEO) with low amount of PEO-block as well as ternary systems modified with this block copolymer and containing via sol–gel in situ synthesized TiO2 nanoparticles were prepared and characterized. The obtained results indicate that block copolymer had enough amount of PEO-block in order to achieve microphase separated materials for a high range of PS-b-PEO contents, morphologies changing from spherical micelles to long wormlike micelles passing through vesicles upon increasing copolymer amounts. In the case of 20 wt.% inorganic/organic epoxy-based materials, addition of synthesized TiO2 nanoparticles into PS-b-PEO-(DGEBA/MCDEA) system led to location of the nanoparticles in PEO-block/epoxy-rich confined between two microphase separated PS-block-rich phases. Designed highly transparent multiphase inorganic/organic epoxy-based materials possess interesting specific properties such as high UV shielding efficiency and high water repellence.  相似文献   

12.
The current state of the art of the use of cross-linked organic polymers, both insoluble (resins or gels) and soluble (micro- and nanogels), as aids for the low-temperature preparation of stable metal oxide nanoparticles or nanostructured metal oxides is reviewed herein. Synthetic strategies for inorganic oxide nanomaterials of this kind can greatly benefit from the use of cross-linked polymers, which may act as scaffolds/exotemplates during inorganic nanoparticle synthesis, or as stabilizers following post-synthetic modification of the nanoparticles. Furthermore, the peculiar properties of the organic cross-linked polymers add to those of the inorganic oxide nanoparticles, producing materials with combined properties. The potential applications of such highly promising composite nanomaterials will be also briefly sketched.  相似文献   

13.
Here it is shown that the chemical nature of outer organic surfactant layers, used to stabilize inorganic nanoparticles (NPs), is a key factor controlling solubility in a mixed liquid CO(2)-heptane (10% vol) solvent.  相似文献   

14.
The multiple functional groups and unique two-dimensional (2D) morphology make chemically modified graphene (CMG) an ideal template for the construction of 2D nanocomposites with various organic/inorganic components. Additionally, the recovered electrical conductivity of CMG may provide a fast-electron-transport channel and can thus promote the application of the resultant nanocomposites in optoelectronic and electrochemical devices. This Concept article summarizes the different strategies for the bottom-up fabrication of CMG-based 2D nanocomposites with small organic molecules, polymers, and inorganic nanoparticles, which represent the new directions in the development of graphene-based materials.  相似文献   

15.
Octakis[3‐(3‐aminopropyltriethoxysilane)propyl]octasilsesquioxane (APTPOSS) as a polyhedral oligomeric silsesquioxane derivative was prepared and used as a pioneer reagent to obtain a novel core–shell composite using magnetic iron oxide nanoparticles as the core and the inorganic–organic hybrid polyhedral oligomeric silsesquioxane as the shell. Fe3O4@SiO2/APTPOSS were confirmed using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, dynamic light scattering, thermogravimetric analysis, X‐ray diffraction and vibrating sample magnetometry. The inorganic–organic hybrid polyhedral oligomeric silsesquioxane magnetic nanoparticles were used as an efficient new heterogeneous catalyst for the one‐pot three‐component synthesis of 1,3‐thiazolidin‐4‐ones under solvent‐free conditions. Moreover, these nanoparticles could be easily separated using an external magnet and then reused several times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
靖波  陈晓  隋震鸣  王庐岩  柴永存  邱化玉 《化学学报》2006,64(13):1319-1323
选择非离子表面活性剂十二烷基(4)聚氧乙烯醚(C12E4)与H2O构成的溶致液晶(LLC)层状模板, 掺杂油酸铵包覆的Fe3O4亲水性磁性纳米粒子, 构建稳定的有机/无机杂合体. 用透射电镜(TEM), X射线粉末衍射(XRD), 偏光显微镜(POM), 小角X射线散射(SAXS)和振动探针式磁强计(VSM)等对粒子及掺杂前后的层状液晶相结构变化进行表征. 结果表明, 粒子掺入使LLC模板的层间距产生了改变, 同时增强了体系有序性.通过对杂合体表征结果的分析, 阐述了模板与粒子间相互作用的机理.  相似文献   

17.
袁建军  翟锦  江雷 《化学进展》2004,16(4):500-507
本文主要综述了基于特定分子设计的有机大分子导向下的无机纳米粒子的分级有序自组装.可以有效导向无机纳米粒子组织的有机大分子主要包括合成大分子和生物大分子,前者如具有氢键识别功能的大分子、聚电解质、嵌段大分子、树枝状大分子;后者如DNA、糖类以及蛋白质.所涉及的无机纳米粒子通常需要通过单层修饰使之与特定的大分子具有识别功能,或者设计表面带有正或负电荷使之与带有负或正电荷的大分子相互识别.该领域的研究在先进功能材料及仿生材料方面具有重要意义.  相似文献   

18.
A method for the elaboration of a heterojunction composed on n-type inorganic semiconducting nanoparticles, TiO(2), and a p-type organic semiconducting polymer poly(3,4-ethylene dioxythiophene) by UV illumination is described.  相似文献   

19.
Aqueous zinc (Zn) batteries (AZBs) are widely considered as a promising candidate for next-generation energy storage owing to their excellent safety features. However, the application of a Zn anode is hindered by severe dendrite formation and side reactions. Herein, an interfacial bridged organic–inorganic hybrid protection layer (Nafion-Zn-X) is developed by complexing inorganic Zn-X zeolite nanoparticles with Nafion, which shifts ion transport from channel transport in Nafion to a hopping mechanism in the organic–inorganic interface. This unique organic–inorganic structure is found to effectively suppress dendrite growth and side reactions of the Zn anode. Consequently, the Zn@Nafion-Zn-X composite anode delivers high coulombic efficiency (ca. 97 %), deep Zn plating/stripping (10 mAh cm−2), and long cycle life (over 10 000 cycles). By tackling the intrinsic chemical/electrochemical issues, the proposed strategy provides a versatile remedy for the limited cycle life of the Zn anode.  相似文献   

20.
近年来有序交替的层状纳米结构薄膜的制备吸引了研究者们的极大关注. 目前, 这类薄膜的制备方法研究得最多的是LB技术[1~3]、基于化学吸附的自组装成膜技术[4,5]和交替沉积组装技术[6~8]. 但这几种方法都有明显的缺陷[9,10], 其中,通过LB技术制备有序交替层状纳米复合薄膜需要昂贵的仪器, 而且由于层间是分子相互作用, 膜的稳定性较差; 基于化学吸附的自组装成膜技术由于需要高反应活性的分子和特殊的基底表面, 并且由于化学反应的产率很难达到100%, 因此通过这种方法制备结构有序的多层膜并不容易; 利用交替沉积的方法制备出具有实用厚度的纳米多层膜需要耗费大量的时间. 最近, 出现了一种称为蒸发诱导的超分子自组装方法, 由这种方法制备的纳米多层膜具有成膜速度快和膜有序度高等优点, 此外还可以通过改变成膜物质浓度和拉膜速度来控制薄膜的厚度, 但与LB膜相比其厚度无法在分子水平上控制. 利用这种方法制备多层膜目前的文献报道仅限于线形SiO2与有机物的组装[10~13]. 本文利用这种方法制备了TiO2/十六烷基三甲基溴化铵纳米复合薄膜并对其结构进行了表征, 结果表明所制备的薄膜具有TiO2/十六烷基三甲基溴化铵有序交替的层状结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号