首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
织造过程中碳纤维束的摩擦磨损会导致成型后复合材料制件的机械性能下降. 采用自制的试验装置模拟织造过程中经纬纱线间的相互作用,研究了法向负载、预加张力和摩擦速率对碳纤维束摩擦磨损行为的影响. 结果表明:碳纤维束的摩擦系数随着法向负载的增加而减小,其磨损程度随着法向负载的增加而增大,相对应的碳纤维束拉伸断裂强力也逐渐下降;碳纤维束的摩擦力和摩擦系数因实际摩擦接触面积的变化随预加张力的增加而增大;摩擦速率的增加几乎不影响碳纤维束的摩擦力和摩擦系数,但延长了其测试值达到稳定所需的周期数.   相似文献   

2.
The present paper proposes a method of virtual testing with a view to investigating the local response of tows within textile ceramic matrix composite (CMC) under various loading conditions. The method was developed on 2D woven SiC/SiC composites. It capitalizes on knowledge on mechanical damage phenomenology and data established in previous works. It is applied to isolated transverse tows subjected to uniaxial loading by parallel longitudinal tows. The transverse tows contain heterogeneities like matrix voids, fibres and interphases. Mesh for finite element analysis is constructed from micrographs of composite cross section. Cracks were introduced into the mesh for simulation of multiple cracking. Transverse tow tensile behavior and data on distributions of flaw populations were derived from finite element computations of stress-state. Results were compared to experimental observations.  相似文献   

3.
The present paper proposes a method of virtual testing with a view to investigating the local response of tows within textile ceramic matrix composite (CMC) under various loading conditions. The method was developed on 2D woven SiC/SiC composites. It capitalizes on knowledge on mechanical damage phenomenology and data established in previous works. It is applied to isolated transverse tows subjected to uniaxial loading by parallel longitudinal tows. The transverse tows contain heterogeneities like matrix voids, fibres and interphases. Mesh for finite element analysis is constructed from micrographs of composite cross section. Cracks were introduced into the mesh for simulation of multiple cracking. Transverse tow tensile behavior and data on distributions of flaw populations were derived from finite element computations of stress-state. Results were compared to experimental observations.  相似文献   

4.
Hysteresis in the saturation versus capillary pressure curves of neutrally wettable fibrous media was simulated with a random pore network model using a Voronoi diagram approach. The network was calibrated to fit experimental air-water capillary pressure data collected for carbon fibre paper commonly used as a gas diffusion layer in fuel cells. These materials exhibit unusually strong capillary hysteresis, to the extent that water injection and withdrawal occur at positive and negative capillary pressures, respectively. Without the need to invoke contact angle hysteresis, this capillary behaviour is re-produced when using a pore-scale model based on the curvature of a meniscus passing through the centre of a toroid. The classic Washburn relation was shown to produce erroneous results, and its use is not recommended when modelling fibrous media. The important effect of saturation distribution on the effective diffusivity of the medium was also investigated for both water injection and withdrawal cases. The findings have bearing on the understanding of both capillarity in fibrous media and fuel cell design.  相似文献   

5.
This paper discusses the axisymmetric squeeze flow of concentrated transversely isotropic fibre suspensions in a power-law matrix and relates to the processing of composite materials such as sheet moulding compounds (SMCs) and glass mat thermoplastics (GMTs). A solution to the squeeze flow problem for a transversely isotropic power-law fluid is presented first, followed by a more detailed micromechanical analysis. In the first part of the paper a variational approach is applied to the interpretation of squeeze flow behaviour. This gives a simple expression for the total pressure, which enables the contributions due to extension and shear to be separated. Applying the procedure to GMT data suggests that the dissipation is predominantly extensional, except at very low plate separations. In the second part, a non-local constitutive equation is derived based on a simple drag law for hydrodynamic interactions. This is then used to model the pressure distribution when the effective length of the fibres is comparable to or determined by the dimensions of the squeeze flow plates. The model is shown to describe the observed squeeze flow stresses in both long and short fibre systems and to relate behaviour to the underlying resin flow properties.  相似文献   

6.
Dry-plug flow is a variation of two-phase plug flow that occurs in small scale channels and refers to the dry wall conditions at gas portions of the flow regime. Previous experimental studies found a significant increase in pressure drop in this flow regime from the two-phase wet-plug flow regime. In this work an analytical model for the pressure drop of this flow regime is developed and phenomena that influence pressure drop are examined. Unlike previous models, the proposed model seems to be applicable to a wide range of capillary numbers and give good estimations for all static contact angles. Contact angle hysteresis turned out to play a major role in inducing pressure drop in this flow regime. Model’s predictions were in good agreement with previous experimental data. Finally the model is applied to very low capillary number region and pressure drop predictions for this region are presented.  相似文献   

7.
An analytical and experimental investigation including vibratory effects of flashing flow in a tube with a sharp edged entrance is presented. A free streamline flow model is applied to predict choking in single-component two-phase flow. By identifying three separate regimes (i.e. jet flow, two-phase homogeneous flow, and single-phase liquid flow) in the flashing flow system, an expression is obtained for the prediction of the minimum stagnation pressure loss under choked flow conditions. A normal shock located between the flashing two-phase mixture and the single-phase liquid was experimentally observed. The location of the shock is predicted as a function of the stagnation pressure drop across the tube. The analytical predictions are verified by experimental data.  相似文献   

8.
The simulation of fibre orientation in dilute suspension with front moving is carried out using the projection and level-set methods. The motion of fibres is described using the Jeffery equation, and the contribution of fibres to the flow is accounted for by the configuration-field method. The dilute suspension of short fibres in Newtonian fluids is considered. The governing Navier–Stokes equation for the fluid flow is solved using the projection method with finite difference scheme, while the fibre-related equations are directly solved with the Runge–Kutta method. In the present study for fibres in dilute suspension flow for injection molding, the effects of various flow and material parameters on the fibre orientation, the velocity distributions and the shapes of the leading flow front are found and discussed. Our findings indicate that the presence of fibre motion has little influence on the front shape in the ranges of fibre parameters studied at the fixed Reynolds number. Influence of changing fibre parameters only causes variation of front shape in the region near the wall, and the front shape in the central core area does not vary much with the fibre parameters. On the other hand, the fibre motion has strong influence on the distributions of the streamwise and transverse velocities in the fountain flow. Fibre motion produces strong normal stress near the wall which leads to the reduction of transversal velocity as compared to the Newtonian flow without fibres, which in turn, leads to the increased streamwise velocity near the wall. Thus, the fibre addition to the flow weakens the strength of the fountain flow. The Reynolds number has also displayed significant influence on the distribution of the streamwise velocity behind the flow front for a given fibre concentration. It is also found that the fibre orientation is not always along the direction of the velocity vector in the process of mold filling. In the region of the fountain flow, the fibre near the centreline is more oriented across the streamwise direction compared to that in the region far behind the flow front. This leads to the fact that the fibre near the centreline in the region of fountain flow is more extended along the transverse direction. As the fibre orientation in the suspension flow and the shape of the flow front have great bearing on the quality of the product made from injection molding, this study has much implications for engineering applications. These results can also be useful in other fields dealing with fibre suspensions.  相似文献   

9.
The miniaturization of hydraulic systems together with ever increasing static and dynamic fluid pressure as is happening in fuel injection systems leads to complex flow effects with very high local and temporal pressure gradients. System optimization for hydraulic efficiency, components durability or spray formation quality needs the understanding of relevant flow properties. Fluid flow simulation models support such understanding, but with the complex nature of flow conditions, they are in need for precise and comprehensive verification and validation data. This work reports on measurement methods and analysis results for local fluid density and pressure measurements under overall stationary, highly turbulent and cavitating flow conditions in planar, optically accessed, model flow experiments. Laser-pulsed interferometry is applied for the measurement of fluid density fields under high spatial (∼3 μm) and temporal (∼5 ns) resolution. Interferometric imaging and image evaluation techniques provide ensemble mean pressure field data, local pressure fluctuation and differential pressure data. This yields information about local flow features such as flow vortex generation frequency, spatial size and shape of vortices and local pressure distribution inside of vortex structures. Features of bubble collapse process and corresponding pressure shock waves have been observed. The analysis method is applied to a forward-facing step and a target flow geometry. Experimental method, evaluation procedures and results are presented in this paper.  相似文献   

10.
Experimental results are presented for a bubbly lubricated externally pressurized circular thrust bearing. The data consists of the measured radial pressure distribution together with the lubricant mass flow rate over a wide range of inlet pressure, air mass flow rate ratio, for an either stationary or rotating bearing.It is shown that the air injection always improves the pressure distribution in the bearing and so can completely avoid the negative pressure generated due to rotational inertia. Also it is shown that the bearing load carrying capacity increases as the injected air mass flow increases, especially at high inlet pressure. The lubricant mass flow rate is reduced by the increase of air mass flow rate and by the decrease of bearing rotational speed.Finally the experimental results described in this paper are in good agreement with the mathematical analysis, based on the homogeneous flow model presented previously.  相似文献   

11.
The paper describes results of an experimental study of pressure and velocity fields arising during normal injection of a radial slot jet into ducted flow. The experiments were carried out for slots of two different widths and for injection parameters varying in a broad range. The pressure profile along the duct length plotted in generalized coordinates was found to be quite a universal distribution. Experimental correlations for the minimum rarefaction in the separation region behind the injected jet were obtained, and comparison was made with the results of simplest numerical analysis. Results of measurements of local hydraulic losses are presented for the duct section where the normal injection of the slot jet was organized. The experimental data are shown to be underestimated compared with the results predicted by the theory of perfect mixing for a ducted flow with mass supply. The possible reasons of hydraulic losses coefficient behavior are discussed.  相似文献   

12.
A complementary experimental and computational study of the flow field evoked by a plasma actuator mounted on a flat plate was in focus of the present work. The main objective of the experimental investigation was the determination of the vector force imparted by the plasma actuator to the fluid flow. The force distribution was presently extracted from the Navier–Stokes equations directly by feeding them with the velocity field measured by a PIV technique. Assuming a steady-in-mean, two-dimensional flow with zero-pressure gradient, the imbalance between the convective term and the momentum equation’s right-hand-side terms reveals the desired resulting force. This force-distribution database was used afterwards as the source term in the momentum equation. Furthermore, an empirical model formulation for the volume-force determination parameterized by the underlying PIV-based model is derived. The model is tested within the RANS framework in order to predict a wall jet-like flow induced by a plasma actuator. The Reynolds equations are closed by a near-wall second-moment closure model based on the homogeneous dissipation rate of the kinetic energy of turbulence. The computationally obtained velocity field is analysed along with the experimental data focussing on the wall jet flow region in proximity of the plasma actuator. For comparison purposes, different existing phenomenological models were applied to evaluate the new model’s accuracy. The comparative analysis of all applied models demonstrates the strength of the new empirical model, particularly within the plasma domain. In addition, the presently formulated empirical model was applied to the flow in a three-dimensional diffuser whose inflow was modulated by a pair of streamwise vortices generated by the present plasma actuator. The direct comparison with existing experimental data of Grundmann et al. (2011) demonstrated that the specific decrease of the diffuser pressure corresponding to the continuous forcing was predicted correctly.  相似文献   

13.
A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas–solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the discrete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble stability, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.  相似文献   

14.
复合型紊流润滑理论模式的研究   总被引:3,自引:1,他引:2  
对复合型紊流润滑理论模式和国际上通用的几种紊流润滑理论模式进行比较研究,针对纯Couette流动和兼有压力梯度与剪切运动的复杂流动2种流场,用各种紊流润滑模式进行计算分析,并与不同雷诺数下时均速度的现有试验数据对比,研究表明:与其它紊流模式比较,复合型紊流润滑模式能准确分析不同工况的流场,与试验数据最为吻合;在低雷诺数下,复合型紊流模式由于理论基础的坚实性,仍能很好地适用,当用于既有高雷诺数又有低  相似文献   

15.
This work focuses on gas/non-Newtonian power-law fluid stratified pipe flow. Two different theoretical approaches to obtain pressure gradient and hold-up predictions are presented: the steady fully developed two-fluid model and the pre-integrated model. The theoretical predictions are compared with experimental data available for horizontal and for slightly downward inclined air/shear thinning fluid stratified flow taken from literature. The predictions of the pre-integrated model are validated showing a good agreement when compared with experimental data. The criteria for the transition from the stratified flow pattern are applied to gas/non-Newtonian stratified flow. The neutral stability analysis (smooth/wavy stratified flow) and the well-posedness (existence region of stratified flow) of governing equations are carry out. The predicted transition boundaries are obtained using the steady fully developed two-fluid model and the pre-integrated model, where the shape factors and their derivatives are accounted for. A comparison between the predicted boundaries and experimental flow pattern maps is presented and shows a good agreement. A comment on the shear stress modeling by the pre-integrated model is provided.  相似文献   

16.
The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter of 260 \(\upmu \hbox {m}\), which enables the measurement of pressure at the pore scale. As a porous medium, we used a PDMS micro-model with known physical and surface properties. A given pore geometry was produced following a procedure we had developed earlier. We explain the technology behind fibre optic pressure sensors and the procedure for integrating these sensors into a micro-model and demonstrate their utility for the measurement of pore pressure under transient two-phase flow conditions. Finally, we present and analyse results of single and two-phase flow experiments performed in the micro-model and discuss the link between small-scale fast pressure changes with pore-scale events.  相似文献   

17.
The supersonic combustion RAM jet (SCRAM jet) engine is expected to be used in next-generation space planes and hypersonic airliners. To develop the engine, stabilized combustion in a supersonic flow field must be attained even though the residence time of flow is extremely short. A mixing process for breathed air and fuel injected into the supersonic flow field is therefore one of the most important design problems. Because the flow inside the SCRAM jet engine has high enthalpy, an experimental facility is required to produce the high-enthalpy flow field. In this study, a detonation-driven shock tunnel was built to produce a high-enthalpy flow, and a model SCRAM jet engine equipped with a backward-facing step was installed in the test section of the facility to visualize flow fields using a color schlieren technique and high-speed video camera. The fuel was injected perpendicularly to a Mach 3 flow behind the backward-facing step. The height of the step, the injection distance and injection pressure were varied to investigate the effects of the step on air/fuel mixing characteristics. The results show that the recirculation region increases as the fuel injection pressure increases. For injection behind the backward-facing step, mixing efficiency is much higher than with a flat plate. Also, the injection position has a significant influence on the size of the recirculation region generated behind the backward-facing step. The schlieren photograph and pressure histories measured on the bottom wall of the SCRAM jet engine model show that the fuel was ignited behind the step.Communicated by K. Takayama PACS 47.40.Ki  相似文献   

18.
This article presents a numerical investigation of turbulent flow in an axisymmetric separated and reattached flow over a longitudinal blunt circular cylinder. The governing equations were discretized by the finite-volume method and SIMPLER method was applied to solve the equations on a staggered grid. The turbulent flow was numerically simulated using the standard k–ε, Abe–Kondoh–Nagano (AKN) and Shear Stress Transport (SST) turbulence models. The comparisons made between numerical results and experimental measurements showed that the SST model is superior to other models in the present calculation.Computations were performed for three different Reynolds numbers of 6000, 10 000 and 20 000 based on the cylinder diameter. To our knowledge, this study represents the first numerical investigation of the present flow configuration. The computational results were validated with the available experimental data of reattachment length, mean velocity distribution and wall static pressure coefficient in the turbulent blunt circular cylinder flows. Further, other characteristics of the flow, such as turbulent kinetic energy, pressure, streamlines, and the velocity vectors are discussed.The results show that the main characteristics of the turbulence flow in the separation region, such as reattachment length or velocity profiles, are nearly independent of the Reynolds number. The obtained results showed that a secondary separation bubble may appear in the main separation bubble near the leading edge. Furthermore, it was found that the turbulent kinetic energy has a large effect on the formation of the secondary bubble.  相似文献   

19.
A semi-empirical model was developed to study the breakdown effects on maneuvering delta wings performing very high angle of attack excursions. The basic vortical flow model used was the Brown & Michael model and an unsteady source distribution was found to simulate the breakdown of the leading edge vortices. The source distribution is based on experimental observations of the vortex breakdown chordwise propagation during pitch-down and pitch-up motion. In spite of the simplicity of the vortical model used, the new model simulates the present complicated flow field. This model succeeds in predicting the leading edge core position hysteresis, the hysteresis in the unsteady pressure distribution and the corresponding airloads at extreme angles of attack. The normal force and pitching moment results are in good agreement with experimental measurements.  相似文献   

20.
Severe slugging can occur in a pipeline-riser system operating at low liquid and gas rates. The flow of gas into the riser can be blocked by liquid accumulation at the base of the riser. This can cause formation of liquid slugs of a length equal to or longer than the height of the riser. A cyclic process results in which a period of no liquid production into the separator occurs, followed by a period of very high liquid production. This study is an experimental and theoretical investigation of two methods for eliminating this undesirable phenomenon, using choking and gas lift. Choking was found to effectively eliminate or reduce the severity of the slugging. However, the system pressure might increase to some extent. Gas lift can also eliminate severe slugging. While choking reduces the velocities in the riser, gas lift increases the velocities, approaching annular flow. It was found that a relatively large amount of gas was needed before gas injection would completely stabilize the flow through the riser. However, gas injection reduces the slug length and cycle time, causing a more continuous production and a lower system pressure. Theoretical models for the elimination of severe slugging by gas lift and choking have been developed. The models enable the prediction of the flow behavior in the riser. One model is capable of predicting the unstable flow conditions for severe slugging based on a static force balance. The second method is a simplified transient model based on the assumption of a quasi-equilibrium force balance. This model can be used to estimate the characteristics of the flow, such as slug length and cycle time. The models were tested against new severe slugging data acquired in this study. An excellent agreement between the experimental data and the theoretical models was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号