首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
Figure
Scheme of the 2D-LC/2D-GC system  相似文献   

2.
Monolithic columns invented in chromatographic praxis almost 40 years ago gained nowadays a lot of popularity in separations by liquid chromatographic technique. At the same time, application of monolithic columns in gas chromatography is less common and only a single review published by Svec et al. [1] covers this field of research. Since that time a lot of new findings on application and properties of monolithic columns in gas chromatography have been published in the literature deserving consideration and discussion. This review considers preparation of monolithic columns for GC, an impact of preparation conditions on column performance, optimization of separation conditions for GC analysis on monolithic columns and other important aspects of preparation and usage of monolithic capillary columns in GC. A final part of the review discusses the modern trends and possible applications in the future of capillary monolithic columns in GC.  相似文献   

3.
Recently developed MOF surface-coating techniques, the controlled SBU approach (CSA) for the generation of MOF-5, and the use of self-assembled monolayers have been combined to generate a wall-bonded, crosslinked stationary phase for gas chromatographic capillary columns displaying excellent performance in the separation of natural gas components. The chromatographic performance of this new type of column has been compared to the state-of-the-art solution for this separation problem, namely a coated silica column of the porous layer open tubular (PLOT) type. Chromatographic parameters such as separation, resolution, and tailing factors, as well as plate numbers and heights in the case of isothermal operation, have been determined. Kinetic and thermodynamic parameters characterizing the analyte-stationary phase interaction have been determined for various C1-C4 analytes.  相似文献   

4.
Summary The performance of a gas chromatographic system coupled to an atomic emission detector (GC/AED) is tested by comparison with a two-dimensional gas chromatographic system equipped with capillary columns of different polarity and simultaneous electron capture and nitrogen-phosphorus detection (ECD/NPD), for the determination of the acaricides chlordimeform, bromopropylate, amitraz and coumaphos on spiked honey samples. The acaricides were extracted with ann-hexane/acetone mixture (8020, v/v) with a further clean-up step on an octadecylsilane cartridge. The 193 nm carbon emission line is the best choice in terms of sensitivity whereas the ECD/NPD system gives better selectivity.  相似文献   

5.
Abstract

An interface which allows thermal desorption and subsequent capillary gas chromatographic analysis of air samples is described. A small solid-sorbent trap is positioned between the sampling tube and capillary column. A sample thermally released from the sampling tube is transferred by a carrier gas at high flow rate to the trap and retained. From there it is again thermally released and transferred to the capillary column by carrier gas at a low flow rate, as required by capillary GC. The transfer and injection steps are effected by means of externally placed solenoid valves. The performance of the system depends on the desorption temperature and time allowed for transfer of the sample between the two adsorbers and the column. These parameters are programmable and can be changed to suit the requirements of a particular analysis. The system allows the analysis of sub-parts-per-billion concentrations of organic compounds in a comparatively simple and reproducible manner. Operation of the system does not require cryogenic cooling of either the trap or the GC oven. Chromatograms of a variety of air samples are presented and discussed.  相似文献   

6.
Packed capillary column solvating gas chromatography (SGC) and open tubular column gas chromatography (GC) were compared with respect to their potentials for fast separations. A recently introduced "universal" peak capacity equation was used to compare the performance of these two methods. The effects of various factors on peak capacity were investigated. Results demonstrate that retention factor and column efficiency are the main factors affecting peak capacity for fast separations. Packed columns produce both high retention factors and high selectivities. While high efficiencies and high peak capacities can be demonstrated by both techniques, open tubular column GC can surpass packed capillary column SGC in both measurements, except for the case of the analysis of simple mixtures in short analysis times, where retention factor and selectivity become important. Practical aspects such as pressure drop and sample capacity are compared for SGC and open tubular column GC. It was found that packed column SGC demonstrates higher sample capacities, but requires much higher column inlet pressures than open tubular column GC. A variety of mobile phases can be used for packed column SGC, which can provide high solvating power for large and polar compounds.  相似文献   

7.
近年国内外毛细管气相色谱柱的进展和趋向   总被引:4,自引:1,他引:3  
报道了近两年毛细管气相色谱柱的发展和趋向. 气相色谱柱制柱工艺是一个成熟的技术, 所以在制柱工艺方面的研究不够活跃. 近年新研究的固定相集中在常温离子液体和各种环糊精的衍生物. 近几年GC毛细管色谱柱的研究和改进集中在色谱柱厂家进行, 并立即成为商品柱. 本文对近两年一些重要期刊上发表的气相色谱论文进行了总结, 发现气相色谱分析所用的色谱柱大都使用毛细管柱, 并趋向于使用商品GC毛细管柱, 所使用的商品色谱柱中, 使用最多的是以含5%苯基的聚甲基硅氧烷做固定相的色谱柱, 其次是以100%甲基的聚硅氧烷做固定相的色谱柱. 极性毛细管色谱柱主要使用PEG、 OV-17和OV-1701固定相.  相似文献   

8.
Summary The possibilities of OV-1701 and RSL-310, two new stationary phases, have been evaluated for capillary gas chromatography in fused silica columns. OV-1701 is a cyanopropylphenyldimethyl polysiloxane of moderate polarity possessing excellent chromatographic characteristics. The phase exhibits high coating and chromatographic efficiencies, high temperature stability and is suitable for cross-linking. RSL-310 is a polar liquid stationary phase yet to be permanently bonded in a capillary column. The selectivity of both phases extends the applicability of fused silica columns.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

9.
Basic characteristics (efficiency, selectivity, non-equilibrium) of capillary columns with a super-thick layer of stationary liquid phase are investigated. In contrast to traditionally used capillary columns with standard stationary phase thickness of 0.1-0.5 um, some new variables are now established. Firstly, the values of relative retention depend on carrier gas linear velocity. Secondly, the asymmetry of chromatographic peaks increased in accordance with the increase in carrier gas velocity. Thirdly, it was theoretically and experimentally shown that dependence of the height equivalent to a theoretical plate (HETP) on carrier gas velocity is linear. The above noted variables are evidences that the new type of GC is realized under these conditions. The use of capillary columns with super-thick layer of stationary liquid phase is practical when the following problems have to be solved: (1) Separation of highly volatile substances; (2) Preliminary concentration of trace compounds from strong diluted samples; (3) Improvements in measurement and accuracy due to the advantages of splitless injection into wide bore columns with super-thick films. Solutions to some analytical tasks while using super-thick stationary liquid phase are shown: (1) Large volume injection into capillary column with sample transfer speed up to 100 microL min(-1); (2) Isothermal splitless injection; (3) Separation of low boiling compounds; (4) Separation of polar substances (alcohols).  相似文献   

10.
The separation mechanism in capillary electrochromatography (CEC) is a hybrid differential migration process, which entails the features of both high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE), i.e., chromatographic retention and electrophoretic migration. The focus of this paper is on the use of electrokinetic data, such as current, electroosmotic flow (EOF) and column efficiency measurements, that are readily available, for an improved understanding of CEC separations. A framework is presented here for the use of this data for evaluation of a variety of performance parameters including, conductivity ratio, interstitial EOF mobility, porosity, and zeta potential. This framework is applied for characterization of two monolithic columns with different chemistry that were manufactured in-house. The above-mentioned performance parameters were calculated for the two columns and it is found that the poly(VBC-EGDMA-SWNT) monolithic column with the GPTMS-PEI coating offers a significantly improved flow distribution in comparison to the poly(VBC-EGDMA) monolithic column. This observation is confirmed by performing separation of peptides on the two columns and height equivalent of a theoretical plate (HETP) measurements on the resulting peaks. It is shown that following our approach leads to an improved understanding of the separations achieved with the columns and to better column design.  相似文献   

11.
罗凡  冯飞  赵斌  田博文  杨雪蕾  周海梅  李昕欣 《色谱》2018,36(8):707-715
气相色谱柱是气相色谱仪的关键部件,主要用于混合气体组分的分离。与传统气相色谱柱相比,基于微机电系统(MEMS)技术设计制作的微型气相色谱柱具有重量轻、体积小、功耗低、分离快速等优点,便于集成到便携式气相色谱仪中,适应了目前气相色谱仪微型化的发展趋势。该文综述了MEMS微型气相色谱柱的研究进展,首先阐述了MEMS微型气相色谱柱理论基础,随后对MEMS微型气相色谱柱沟道布局及柱内结构、固定相支撑层及固定相制备等方面进行了综述,最后对其发展趋势进行了展望。  相似文献   

12.
田洪旭  李云  陈吉平 《色谱》2010,28(11):1011-1014
初步探讨了毛细管整体柱的制备方法及其在气相色谱分析中的应用。以液相色谱用毛细管整体柱作为研究基础,通过改变甲苯和十二醇的比例,使整体柱适用于气相色谱分析。通过二乙烯苯与键合在管壁上的3-(异丁烯酰氯)丙基三甲氧基硅烷(TMP)键合以及其自身的聚合,获得具有牢固结构、良好机械强度的整体柱。将其用于混合溶剂的分析和白酒标样的分析,可直接分析水中低碳醇。与现有的商品柱进行比较,结果表明所制备的整体柱均优于用以对照的商品色谱柱,其中在混合溶剂的分析中,醇类、酯类、酮类和芳烃类的峰形均优于用于比较的多孔层开口管(PLOT)柱;在白酒标样分析中,使得乙醛、甲醇、乙酸乙酯的色谱峰能够分开,比现有的聚乙二醇(PEG-20M)柱的分析方法更为便捷。  相似文献   

13.
Glass capillary gas chromatography is a high resolution separation method which allows the qualitative and quantitative analysis of even complex mixtures, which may contain many components–also isomeric–in a wide range of volatilities, polarities and concentrations. The principal limitation of gas chromatographic application is given by an insufficient volatility of the species to be separated. Elevated temperatures have to be applied if the application range is to be extended and to achieve steep peak profiles, i.e. low detection limits at high resolution. The use of elevated temperatures is limited, of course, by the temperature stability of both the solvent (stationary liquid and support) and the solutes. The problems of trace analysis for low volatility compounds at high resolution and its limitational parameters regarding sampling, separation and detection are discussed. The applicability of glass capillary columns in this field is influenced by the following parameters: tailing behaviour; irreversible adsorption of polar and decomposition of unstable solutes; thermal stability of stationary liquid (including the support deactivation); separation efficiency and sample capacity (film thickness). Multidimensional gas chromatography using capillary columns coupled either with a packed or another capilllary column for preseparations may be applied with advantage in the analysis of complex mixtures.  相似文献   

14.
The writer of this review published in 1978 a three-part article on two-dimensional gas chromatography in the first three issues of this journal [1]. The review was written at a time when capillary column GC was still in its infancy. Commercial columns were (essentially) unavailable and sample introduction into capillary columns was done exclusively in the split mode. Two-dimensional separations were explored in only a few laboratories. The limitations of capillary column technology made this exercise rather difficult. The introduction of fused silica capillary columns in the early eighties drastically changed the landscape in which gas chromatography was practiced. It took the chromatographic community just a few years to convert from packed columns to capillary columns. Instrumentation and accessories specifically designed for capillary column use came onto the market. This writer had great hopes that the revolution in capillary column GC would be mirrored in the development of instrumentation for Two-Dimensional Gas Chromatography. This never materialized. On the contrary, tentative steps taken by a few manufacturers and suppliers of chromatographic equipment fizzled out. It was perhaps the introduction of relatively inexpensive and user friendly GC/MS instrumentation, in combination with nearly indestructible fused silica capillary columns that took away the incentive to develop commercially viable Two-Dimensional Gas Chromatography. Much of the thinking went like this: why insist on good chromatography if mass spectrometry can do the job without the need for complete separation. Some progress in the further development of conventional Two-Dimensional Gas Chromatography has certainly been made over the last 20 years but there has not been a great deal of excitement. Applications have also been relatively sparse and they are limited to just a few areas. Science does not remain static and chromatography is no exception. Progress in gas chromatography is driven by new technology and ideas. Substantial improvements in two-dimensional GC were not forthcoming until Phillips and his research group introduced and implemented an entirely new form of Two-Dimensional Gas Chromatography, called comprehensive two-dimensional GC, or GC×GC. This breakthrough occurred only in 1991 [2]. It does take some time before scientists change attitudes and habits. There is always a time lag between the introduction of new technology and its general acceptance. The public's attitude toward comprehensive Two-Dimensional Gas Chromatography is probably no exception. The number of scientists who are actively pursuing this new branch of gas chromatography is still very small. It is often a single individual who carries the torch. J.B. Phillips' name is synonymous with comprehensive Two-Dimensional Gas Chromatography. He is not only its inventor and proponent but his fertile mind has initiated research in other related areas. Sadly, he passed away shortly before this review was written. This contribution is dedicated to his memory.  相似文献   

15.
Summary Methyl(phenyl)silicones offer useful selectivities when used as stationary phases in gas chromatography (GC). Such phases have, however, hitherto been of restricted importance in capillary GC due to the lack of phases having a viscosity high enough to ensure stationary phase film stability. Further, to utilize fully the possibilities of a methyl(phenyl)silicone capillary column, it must also possess high efficiency and a high degree of deactivation.In this work, the preparation of soda-glass capillary columns coated within situ cured methyl(phenyl) and methyl(tolyl)-silicones is presented. Vulcanization was made possible by the introduction of some vinyl substitution in the gum to be cured: tolyl-containing gums could be cured without the presence of vinyl groups. In addition, fused silica capillary columns coated with OV-1701 were prepared.The columns show a coating efficiency of above 80%, a thermal stability up to 320 °C and a high degree of deactivation. Their utility is demonstrated by the separation of samples containing polynuclear aromatics, antidepressants and some potent mutagens.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

16.
Solvent vapors in air may be measured with capillary gas chromatographic columns. By using large diameter columns and sample loops of approximately the same internal diameter, the column may be connected directly to the gas sampling valve. This approach eliminates the use of a splitter or cryogenic trapping and allows low levels to be measured. By operating the column at high velocity, column efficiency is sacrificed for increase in speed.  相似文献   

17.
A method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns. Also, the potential of ultra-high-pressure liquid chromatography is discussed in this context. In the HPLC mode, the best results were obtained with silica monoliths; in the CEC mode, the low-density methacrylate-ester-based monoliths showed the best performance.  相似文献   

18.
Summary A gas chromatographic system with capillary columns (fused silica) for the analysis of radiolabelled compounds is described. The system presented is based on a dual column gas chromatograph equipped with column switching facllity and a variable splitter at the column outlet combined with a dead-volume free adapter for the radioactivity monitor for continous measurement of radioactivity in the column effluent. The first column works as a separation column and the second is roughly shortened and used as a feed to the mass detector. The adjustment of the split ratio is regulated by the inlet pressures for the carrier gas supplying both columns. For mass detection all conventional systems can be used. Detection of radioactivity by a gas proportional counter (system based on a combustion technique). Three flow modes can be adjusted: a) total column effluent to the mass detector or b) to the radioactivity monitor, and c) simultaneous flow (dependent on the chosen split ratio) to mass-and radioactivity detectors. The system was developed for use in clinical chemistry and tested with labelled and unlabelled steroids. The method for peak identification by means of relative retention times and methylene units was possible also for radioactive peaks when a heart cutting technique was used. The radio gas chromatographic system presented allows the development of radiochromatograms with the same peak characteristics as in conventional capillary gas chromatography.Presented at the 14th International Symposium on Chromatography London, September, 1982  相似文献   

19.
Uncoated but deactivated pre-columns have become a widely used tool in capillary gas chromatography (GC), serving strongly differing purposes. Pre-columns are often used as guard columns, reducing the effects of involatile sample by-products on chromatographic performance and rendering exchange of contaminated column inlets simple. Wide-bore pre-columns facilitate introduction of the syringe needle and open the way for a relatively robust on-column autosampler. Other pre-columns are used for re-concentrating solute bands that are broadened due to the flow of sample liquid in the column inlet (retention gap). Long pre-columns allow on-column injection of large sample volumes (e.g., 50-80 microliter when a 15 m X 0.32 mm I.D. pre-column is used). The background of the various uses of pre-columns is discussed, concluding with an evaluation of different deactivation methods for the internal wall of the pre-columns. Critical parameters are inertness, wettability and retention power. Press-fit connections are recommended for coupling pre-columns to the coated columns.  相似文献   

20.
陈光伟  吕翔 《分析化学》1998,26(1):59-63
用石英玻璃微珠模拟了HP-1,HP-20M,HP-17毛细管色谱柱内壁,用真空重量法测定了丙烷、丁烷、丙烯、液化石油气样品在3种模拟毛细管内壁表面的吸附等温线,并计算了等量吸附热随吸附量的变化关系。结果表明改性石英玻璃表面固定相的化学性质是吸附等温线类型的决定因素。本文所得结果对毛细管色谱动力学过程的理解,样品在毛细管柱上的活度系数及液化石油气组成准确测定等方面有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号