首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the bonding density of the octadecyl chains onto the same silica on the adsorption and retention properties of low molecular weight compounds (phenol, caffeine, and sodium 2-naphthalene sulfonate) was investigated. The same mobile phase (methanol:water, 20:80, v/v) and temperature (T = 298 K) were applied and two duplicate columns (A and B) from each batch of packing material (neat silica, simply endcapped or C1 phase, 0.42, 1.01, 2.03, and 3.15 micromol/m2 of C18 alkyl chains) were tested. Adsorption data of the three compounds were acquired by frontal analysis (FA) and the adsorption energy distributions (AEDs) were calculated using the expectation-maximization method. Results confirmed earlier findings in linear chromatography of a retention maximum at an intermediate bonding density. From a general point of view, the saturation capacity of the adsorbent tends to decrease with increasing bonding density, due to the vanishing space intercalated between the C18 bonded chains and to the decrease of the specific surface area of the stationary phase. The equilibrium constants are maximum for an intermediary bonding density (approximately 2 micromol/m2). An enthalpy-entropy compensation was found for the thermodynamic parameters of the isotherm data. Weak equilibrium constants (small deltaH) and high saturation capacities (large deltaS) were observed at low bonding densities, higher equilibrium constants and lower saturation capacities at high bonding densities, the combinations leading to similar apparent retention in RPLC. The use of a low surface coverage column is recommended for preparative purposes.  相似文献   

2.
The chromatographic properties of four cholesterol bonded phases with different structures were studied. The columns used were packed with a stationary phase containing a cholesterol molecule attached to the silica surface using different types of linkage molecules. As a basic characteristic of the bonded phases the hydrophobicity and silanol activity (polarity) were investigated. The presence of the polar amino and carboxyl groups in the structure of the bonded ligand strongly influences the polarity of the bonded phase. Columns were compared according to methylene selectivity using a series of benzene homologues and according to their shape and size selectivity using polycyclic aromatic hydrocarbons (PAHs). The measurements were done using MeOH–water and ACN–water mobile phases. The presented results show that the coverage density of the bonded ligands and length of the linkage strongly influence the retention and selectivity of cholesterol bonded phases.  相似文献   

3.
The influence of the average column pressure (ACP) on the elution volume of thiourea was measured on two RPLC columns, packed with Resolve-C18 (surface coverage 2.45 micromol/m2) and Symmetry-C18 (surface coverage 3.18 micromol/m2), and it was compared to that measured under the same conditions on an underivatized silica (Resolve). Five different methanol-water mixtures (20, 40, 60, 80 and 100% methanol, v/v) were used. Once corrected for the compressibility of the mobile phase, the data show that the elution volume of thiourea increases between 3 and 7% on the C18-bonded columns when the ACP increases from 50 to 350 bar, depending on the methanol content of the eluent. No such increase is observed on the underivatized Resolve silica column. This increase is too large to be ascribed to the compressibility of the stationary phase (silica + C18 bonded chains) which accounts for less than 5% of the variation of the retention factor. It is shown that the reason for this effect is of thermodynamic origin, the difference between the partial molar volume of the solute in the stationary and the mobile phase, Delta V, controlling the retention volume of thiourea. While Delta V is nearly constant for all mobile phase compositions on Resolve silica (with Delta V approximately equal to -4 mL/mol), on RPLC phases, it significantly increases with increasing methanol content, particularly above 60% methanol. It varies between -5 mL/mol and -17 mL/mol on Resolve-C18 and between -9 mL/mol and -25 mL/mol on Symmetry-C18. The difference in surface coverage between these two RP-HPLC stationary phases increases the values of Delta V by about 5 mL/mol.  相似文献   

4.
The chromatographic properties of four phenyl‐bonded phases with different structures were studied. The columns used were packed with a stationary phase containing a phenyl ring attached to the silica surface using different types of linkage molecules. As a basic characteristic of the bonded phases, the hydrophobicity and silanol activity (polarity) were investigated. The presence of the polar amino and amide groups in the structure of the bonded ligand strongly influences the polarity of the bonded phase. Columns were compared according to methylene selectivity using a series of benzene homologues and according to their shape and size selectivity using polycyclic aromatic hydrocarbons. The measurements were done using methanol/water and acetonitrile/water mobile phases. The presented results show that the presence of polar functional groups in the ligand structure strongly influences the chromatographic properties of the bonded phase.  相似文献   

5.
In this study, we examined the effect of first dimension column selectivity in reversed phase (RP) online comprehensive two dimensional liquid chromatography (LC×LC). The second dimension was always a carbon clad metal oxide reversed phase material. The hydrophobic subtraction model (HSM) and the related phase selective triangles were used to guide the selection of six different RP first dimension columns. Various kinds of samples were investigated and thus two different elution conditions were needed to cause full elution from the first dimension columns. We compared LC×LC chromatograms, contours plots, and fcoverage plots by measuring peak capacities, peak numbers, relative spatial coverage, correlation values, etc. The major finding of this study is that the carbon phase due to its rather different selectivity from other reversed phases is reasonably orthogonal to a variety of common types of bonded reversed phases. Thus quite surprisingly the six different first dimension stationary phases all showed generally similar separation patterns when paired to the second dimension carbon phase. This result greatly simplifies the task of choosing the correct pair of phases for RP×RP.  相似文献   

6.
This study represents the first time that both the mobile phase composition and the temperature are simultaneously controlled to examine silica-bonded octadecylsilyl (C18) ligands spectroscopically at typical liquid chromatographic (LC) mobile phase flow-rates and back-pressures. Raman spectroscopy is used to characterize the behavior of the C18 bonded ligands equilibrated at temperatures from 45 to 2 degrees C in neat, single-component, mobile phase solvents including: water, acetonitrile, methanol, and chloroform. In addition, the effect of stationary phase ligand bonding density is examined by using two different monomeric reversed-phase liquid chromatographic (RPLC) stationary phases, a 2.34 and a 3.52 micromol m(-2) Microporasil C18 stationary phase, under identical conditions. The direct, on-column, spectroscopic analysis used in this study allows direct evaluation of the temperature-dependent behavior of the bonded C18 ligands. The temperature-dependent ordering of the stationary phase ligands is examined to determine if the ligands undergo a phase transition from a less-ordered "liquid-like" state at higher temperatures to a more-ordered "solid-like" state at lower temperatures. A discrete phase transition was not observed, but rather a continual ordering as temperature was lowered.  相似文献   

7.
Summary Variations in retention and selectivity have been studied in cyano, phenyl and octyl reversed bonded phase HPLC columns. The retention of toluene, phenol, aniline and nitrobenzene in these columns has been measured using binary mixtures of water and methanol, acetonitrile or tetrahydrofuran mobile phases in order to determine the relative contributions of proton donor-proton acceptor and dipole-dipole interactions in the retention process. Retention and selectivity in these columns was correlated with polar group selectivities of mobile phase organic modifiers and the polarity of the bonded stationary phases. In spite of the prominent role of bonded phase volume and residual silanols in the retention process, each column exhibited some unique selectivities when used with different organic modifiers.  相似文献   

8.
The effects of four aromatic compounds on alkyl chain conformational order for a series of high-density docosylsilane (C22) stationary phases with surface coverage ranging from 3.61 to 6.97 micromol/m2 are investigated using Raman spectroscopy. Aromatic compounds studied include benzene-d6, toluene-d8, aniline-d7 and anisole-d8. In general, these aromatic solvents decrease the conformational order of the C22 phases relative to air suggesting partitioning of the aromatics into the alkyl chains of these stationary phases. Changes in alkyl chain conformational order are linearly dependent on the solvent hydrophobicity parameter, log K ow, and are also dependent on stationary phase properties (i.e. polymerization method and surface coverage). A comparison is made between C22 and C18 bonded phase systems. The conformational order of the alkyl chains in a mixed solute/mobile phase system is also studied using 80% methanol/water as the mobile phase and aniline-d7, anisole-d8 or toluene-d8 as solutes. Collectively, the Raman spectroscopic evidence at the molecular level suggests interaction of these aromatic species with the bonded alkyl chains through partitioning.  相似文献   

9.
Four cholesterol bonded phases with different structures were investigated. The columns studied were packed with stationary phase containing cholesterol attached to the silica surface using different types of linkage molecules. The presence of the polar amino and carboxyl groups in the structure of the bonded ligand strongly influence on the solvation process. The possibility of hydrogen bonding, dipole-dipole and π-π electron interactions lead to preferential solvation of bonded ligands. The coverage density of bonded ligands and length of the linkage strongly influence the adsorption of solvent from the mobile phase. The removal of residual silanols during the hydrosilation procedure significantly influences solvation of the bonded phase. Excess isotherms of the commonly used solvents in RP HPLC (methanol and acetonitrile) were obtained using the minor disturbance method. For comparison of the stationary phases prepared on different silica gels the excess adsorbed amounts were calculated per volume of the stationary phase in the column. The hydrosilated UDC Cholesterol bonded phase is preferentially solvated by methanol whereas the highest coverage Cosmosil Cholester phase exhibit high adsorption of acetonitrile. Polar groups in the Amino-cholesterol type bonded phase are solvated with both solvent but the mechanisms of these processes are different.  相似文献   

10.
The overall peak capacity in comprehensive two-dimensional liquid chromatographic (LC x LC) separation can be considerably increased using efficient columns and carefully optimized mobile phases providing large differences in the retention mechanisms and separation selectivity between the first and the second dimension. Gradient-elution operation and fraction-transfer modulation by matching the retention and the elution strength of the mobile phases in the two dimensions are useful means to suppress the band broadening in the second dimension and to increase the number of sample compounds separated in LC x LC. Matching parallel gradients in the first and second dimension eliminate the necessity of second-dimension column re-equilibration after the independent gradient runs for each fraction, increase the use of the available second-dimension separation time and can significantly improve the regularity of the coverage of the available retention space in LC x LC separations, especially with the first- and second-dimension systems showing partial selectivity correlations. Systematic development of an LC x LC method with parallel two-dimensional gradients was applied for separation of phenolic acids and flavone compounds. Several types of bonded C18, amide, phenyl, pentafluorophenyl and poly(ethylene glycol) columns were compared using the linear free energy relationship method to find suitable column combination with low correlation of retention of representative standards. The phase systems were optimized step-by-step to find the mobile phases and gradients providing best separation selectivity for phenolic compounds. The optimization of simultaneous parallel gradients in the first and second dimension resulted in significant improvement in the utilization of the available two-dimensional retention space.  相似文献   

11.
The effectiveness of employing stationary phases composed of chemically bonded cyclodextrin molecules in the high performance liquid chromatographic separation of a variety of different types of compounds is summarized. Over one hundred compounds, including optical, geometrical, and structural isomers, diastereomers, and epimers were successfully separated from each other via use of beta- or gamma-cyclodextrin bonded phases and aqueous methanolic mobile phases. The mechanism of separation is based upon inclusion complex formation between the compounds being separated and the cyclodextrin molecules bonded to the stationary phase. The effects of temperature, mobile phase composition and flow rate upon the chromatographic selectivity and resolution are described. The results indicate that the cyclodextrin columns may be more versatile, flexible, and effective compared to the conventional normal or reversed phase columns.  相似文献   

12.
Calixarene‐bonded stationary phases received growing interest in HPLC as stationary phases with special retention characteristics and selectivity. The commercially available unsubstituted and ptert‐butyl‐substituted Caltrex® columns have been intensively studied and characterized in our workgroup. They can be used as reversed phases, yet they support additional interactions. Especially, their steric, polar and ionic properties differ from conventional alkyl‐bonded phases. However, also the hydrophobic interaction shows differences since adsorption and partition interactions on or in a bonded layer of calixarenes are not similar to those of alkyl‐bonded layers. The relative strength of the hydrophobic properties of the stationary phases has been found depending on the methanol concentration of the mobile phase. Generally, the dependencies of their interaction strengths on mobile‐phase conditions, e.g. the change of the intensity of the hydrogen‐bonding abilities with decreasing methanol content, are not similar from phase to phase either. This probably gives calixarene‐bonded stationary phases enhanced suitability for analyses at extreme compositions of the mobile phase. An overview about the synthesis, retention and selectivity properties of Caltrex® columns is given here.  相似文献   

13.
The thermodynamic retention behaviour of a linear series of polycyclic aromatic hydrocarbons (PAHs) was investigated on C18 and selected phenyl-type reversed-phase stationary phases, namely C18, C18 Aqua, Propyl-phenyl and Synergi polar-RP stationary phases, using methanol mobile phases. The Propyl-phenyl stationary phase, despite having the lowest surface coverage, was found to exhibit significantly larger enthalpic interactions to the other Phenyl-type phase (Synergi polar-RP) even though this had a much higher surface coverage. This indicated that stronger interactions between the PAHs and the stationary phase ligands were occurring on the Propyl-phenyl phase. Evaluation of the elution band profile of the PAHs in the aqueous methanol mobile phase revealed fairly symmetrical bands for the C18, C18 Aqua and Synergi polar-RP, but severe peak tailing on the Propyl-phenyl phase. A change in mobile phase from methanol to acetonitrile improved the peak shape of the PAHs on the Propyl-phenyl phase, leading to the assumption that unfavourable pi-pi interactions were occurring between the electron-rich PAHs and the electron-rich phenyl rings of the Propyl-phenyl phase.  相似文献   

14.
Hydrophilic interaction chromatography (HILIC) is valuable alternative to reversed-phase liquid chromatography separations of polar, weakly acidic or basic samples. In principle, this separation mode can be characterized as normal-phase chromatography on polar columns in aqueous-organic mobile phases rich in organic solvents (usually acetonitrile). Highly organic HILIC mobile phases usually enhance ionization in the electrospray ion source of a mass spectrometer, in comparison to mobile phases with higher concentrations of water generally used in reversed-phase (RP) LC separations of polar or ionic compounds, which is another reason for increasing popularity of this technique. Various columns can be used in the HILIC mode for separations of peptides, proteins, oligosaccharides, drugs, metabolites and various natural compounds: bare silica gel, silica-based amino-, amido-, cyano-, carbamate-, diol-, polyol-, zwitterionic sulfobetaine, or poly(2-sulphoethyl aspartamide) and other polar stationary phases chemically bonded on silica gel support, but also ion exchangers or zwitterionic materials showing combined HILIC-ion interaction retention mechanism. Some stationary phases are designed to enhance the mixed-mode retention character. Many polar columns show some contributions of reversed phase (hydrophobic) separation mechanism, depending on the composition of the mobile phase, which can be tuned to suit specific separation problems. Because the separation selectivity in the HILIC mode is complementary to that in reversed-phase and other modes, combinations of the HILIC, RP and other systems are attractive for two-dimensional applications. This review deals with recent advances in the development of HILIC phase separation systems with special attention to the properties of stationary phases. The effects of the mobile phase, of sample structure and of temperature on separation are addressed, too.  相似文献   

15.
Hexabromocyclododecane (HBCD) is a flame retardant that is undergoing environmental risk assessment. The liquid chromatographic retention and electrospray ionization matrix effects were investigated for HBCD methods of analysis for environmental matrices. Column selectivity towards HBCD diastereomers was evaluated for C30 and C18 stationary phases under different mobile phase conditions and column temperatures. The HBCD elution order was dependent on the shape selectivity of the stationary phase and the mobile phase composition. Greater resolution, on columns with reduced shape selectivity, of beta-HBCD and gamma-HBCD was achieved with the use of an acetonitrile/water (compared with a methanol/water) mobile phase composition. A liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the analysis of HBCD in biological tissues was evaluated for potential matrix effects. The influence of extracted matrix components on HBCD diastereomer and enantiomer analysis was investigated using a postextraction addition approach. Although the analysis of HBCD diastereomers was relatively unaffected by the sample matrix, the responses of the HBCD enantiomers in tissue samples were significantly influenced by matrix effects and other changes to the ionization conditions. The use of racemic 13C-labeled HBCD diastereomers as internal standards for enantiomer fraction measurements corrected for the changes in the mass spectrometer response.  相似文献   

16.
A database of system constants for 32 open-tubular columns at 100 degrees C is used to identify stationary phases for obtaining a wide selectivity space in comprehensive GC. Three parameters based on the Euclidean distance (D-parameter) or vectors (d-parameter and costheta) in hyperspace are used to establish the chemical similarity and retention correlation as an inverse scale of selectivity differences. It is shown that the poly(methyloctylsiloxane) stationary phase is the best candidate for a low-selectivity stationary phase and affords a wider selectivity space when combined with a selective polar stationary phase than poly(dimethylsiloxanes). The most suitable polar stationary phases are poly(ethylene glycols) or bis(cyanopropylsiloxane-co-silarylenes and to a lesser extent poly(methyltrifluoropropylsiloxanes). No systems are truly orthogonal but angles between individual stationary phase vectors of about 75 degrees are possible by choosing the correct combination of stationary phases.  相似文献   

17.
Chromatographic properties of silica-, zirconia- and alumina-based columns with octadecyl-, polyethylene glycol- and pentafluorophenylpropyl-bonded stationary phases were tested. Selectivities of nine columns for LC were characterized using chromatographic methods including Walters, Engelhardt, Tanaka and Galushko hydrophobicity and silanol activity tests, measurements of methylene selectivity in various aqueous-methanol and aqueous-acetonitrile mobile phases and of gradient lipophilic capacity as a measure of the effect of the sample hydrophobicity on gradient-elution separations. A semi-empirical interaction indices model, assuming a predominant role of the solvophobic interactions of test compounds with different polarities, was compared with the linear free energy relationships approach taking into account selective polar interactions. The interaction indices model was applied to both non-polar stationary phases bonded on silica, alumina and zirconia supports, and to the non-modified adsorbents in the normal-phase LC. The retention data of isomeric naphthalene disulfonic acids were used to compare the attractive and repulsive ionic interactions of the columns in purely aqueous mobile phases. The results of the hydrophobicity and polarity tests were consistent, and allowed column characterization and classification. Silanol activity was important with octadecyl silica columns, but was relatively insignificant with bonded polyethylene glycol and pentafluorophenylpropyl phases on silica gel support. Polar interactions with the alumina and zirconia support materials significantly affect the retention.  相似文献   

18.
A series of 11 homemade octadecyl bonded phases with different coverage densities were tested to determine the influence of the stationary phase on the retention in highly aqueous mobile phases. The concentrations of the organic modifiers (methanol and ACN) were in the range of 0–20%v/v. The coverage density of bonded ligands and the presence of the end‐capping have strong influence on the solute retention. Amoxicillin (AMO) was chosen as the test compound. Dual properties of AMO, which contain hydrophobic skeleton and polar groups (amino, hydroxyl and carbonyl), cause irregular changes of the retention over the stationary phase hydrophobicity and silanol activity at given mobile phase composition. Presented data show that application of non‐standard low coverage density C18 phases allow to determine AMO in the RPLC condition with high retention.  相似文献   

19.
Retention and selectivity characteristics of different calixarene‐, resorcinarene‐ and alkyl‐bonded stationary phases are examined by analyzing a set of test solutes covering the main interactions (hydrophobic, steric, ionic, polar) that apply in HPLC. Therefore Dolan and Snyder's multiple term linear equation has been adapted to fit the properties of calixarene‐bonded columns. The obtained parameters are used to describe retention and selectivity of the novel Caltrex® phases and to elucidate underlying mechanisms of retention. Here, differences of stationary phase characteristics at different methanol concentrations in the mobile phases are examined. Both selectivity and retention were found to depend on the methanol content. Differences of these dependencies were found for different stationary phases and interactions. The differences between common alkyl‐bonded and novel calixarene‐bonded phases increase with increasing methanol content.  相似文献   

20.
A series of polycyclic aromatic hydrocarbons (PAHs) of different size and shape has been used to characterize the chromatographic behavior of five calix[4]arene stationary phases in 1,3‐alternate conformation synthesized in our laboratory. The selection of linear, four‐ring nonlinear, and five‐ring PAHs gave data on selectivity changes across range of the calix[4]arene columns. Retention of the 12 aromatic solutes has been evaluated at various methanol contents in the mobile phase (70–100% v/v) and column temperatures (20–45°C). The thermodynamic parameters underlying the retention mechanisms revealed that each of the five calix[4]arene columns exhibited variation in selectivity and retention of PAHs caused by enthalpy and entropy effects. The calixarene stationary phases substituted with electron‐withdrawing groups exhibit enhanced selectivity toward PAHs in comparison to the rest of the investigated columns. The observed divergences are due to differences in solute–stationary phase interactions and originate in π–π and π‐electron transfer specific to the analytes and the type of calix[4]arene functionalization at the upper rim, as well as steric and sorption phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号