首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur (S) isotope ratios of thoroughly dried organic samples were measured by direct thermal decomposition in an elemental analyzer coupled to an isotope ratio mass spectrometer in continuous flow mode (EA-CF-IRMS). For organic samples of up to 13 mg weight and with total S contents of more than 10 microg, the reproducibility of the delta34S(organic) values was +/-0.4 per thousand or better. However, the delta34S values of organic samples measured directly by online EA-CF-IRMS analysis were between 0.3 and 2.9 per thousand higher than those determined on BaSO4 precipitates produced by Parr Bomb oxidation from the same sample material. Our results suggest that structural oxygen in organic samples influences the oxygen isotope ratios of the SO2 produced from organic samples. Consequently, SO2 generated from organic samples appears to have different 18O/16O ratios than SO2 generated from BaSO4 precipitates and inorganic reference materials, resulting in a deviation from the true delta34S values because of 32S16O18O contributions to mass 66. It was shown that both the amount of structural oxygen in the organic sample, and the difference of the oxygen isotope ratios between organic samples and tank O2, influenced the magnitude of the observed deviation from the true delta34S value after direct EA-CF-IRMS analysis of organic samples. Suggestions are made to correct the difference between measured delta34S(organic) and true delta34S values in order to obtain not only reproducible, but also accurate S isotope ratios for organic materials by EA-CF-IRMS.  相似文献   

2.
Hintelmann H  Lu S 《The Analyst》2003,128(6):635-639
Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.  相似文献   

3.
A new, fast, continuous flow technique is described for the simultaneous determination of delta33S and delta34S using SO masses 48, 49 and 50. Analysis time is approximately 5 min/sample with measurement precision and accuracy better than +/-0.3 per thousand. This technique, which has been set up using IAEA Ag2S standards S-1, S-2 and S-3, allows for the fast determination of mass-dependent or mass-independent fractionation (MIF) effects in sulfide, organic sulfur samples and possibly sulfate. Small sample sizes can be analysed directly, without chemical pre-treatment. Robustness of the technique for natural versus artificial standards was demonstrated by analysis of a Canon Diablo troilite, which gave a delta33S of 0.04 per thousand and a delta34S of -0.06 per thousand compared to the values obtained for S-1 of 0.07 per thousand and -0.20 per thousand, respectively. Two pyrite samples from a banded-iron formation from the 3710 Ma Isua Greenstone Belt were analysed using this technique and yielded MIF (Delta33S of 2.45 and 3.31 per thousand) comparable to pyrite previously analysed by secondary ion probe.  相似文献   

4.
Relationships between recent migration and hair delta(18)O values were examined for 40 people living in a rural community in SW England. The isotopic contents of 35 'local' hair samples were compared with those of 5 recently arrived individuals (from Australia, Canada, Chile, Germany and the USA). The hair delta(18)O values of these 'visitors' were +7.9 (Omaha, USA), +11.2 (Jena, Germany), +12.1 (Osorno, Chile), +12.6 (Montreal, Canada) and +14.3 per thousand (Adelaide, Australia). The hair value for the USA visitor (+7.9 per thousand) fell outside the range for the 33 local adult residents, +10.5 to +14.3 per thousand (+12.7 +/- 0.8 per thousand). Hair delta(18)O values did not identify the individuals from Adelaide, Montreal and Osorno as 'visitors', but hair delta(13)C or delta(34)S data did. Combining the hair delta(18)O, delta(13)C and delta(34)S values using principal components analysis (two components explained 89% of the overall variation among the 40 subjects) helped to more clearly distinguish European from non-European individuals, indicating the existence of global overall isotope (geo-origin) relationships.  相似文献   

5.
Twelve biological-matrix, agricultural/food reference materials, Corn Stalk (Zea Mays) (NIST RM 8412), Corn Kernel (Zea Mays) (NIST RM 8413), Bovine Musele Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438) were developed. They were characterized with respect to elemental composition via two extensive international interlaboratory characterization campaigns providing 303 reference and informational concentration values for 34 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W, Zn) of nutritional, toxicological, and environmental significance. These products are available to the analytical community, for quality control of elemental composition analytical data, from the Standard Reference Materials Program, National Institute of Standards and Technology, Gaithersburg, MD, USA.  相似文献   

6.
We determined grain-scale heterogeneities (from 6 to 88 microg) in the stable carbon and oxygen isotopic compositions (delta(13)C and delta(18)O) of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8) using a continuous-flow isotope ratio mass spectrometry (CF-IRMS) system that realizes a simultaneous determination of the delta(13)C and the delta(18)O values with standard deviations (S.D.) of less than 0.05 per thousand for CO(2) gas. Based on the S.D. of the delta(13)C and delta(18)O values determined for CO(2) gases evolved from the different grains of the same calcite material, we found that NBS 19, IAEA-CO-1, and IEAE-CO-8 were homogeneous for delta(13)C (less than 0.10 per thousand S.D.), and that only NBS 19 was homogeneous for delta(18)O (less than 0.14 per thousand S.D.). On the level of single grains, we found that both IAEA-CO-1 and IAEA-CO-8 were heterogeneous for delta(18)O (1.46 per thousand and 0.76 per thousand S.D., respectively), and that NBS 18 was heterogeneous for both delta(13)C and delta(18)O (0.34 per thousand and 0.54 per thousand S.D., respectively). Closer inspection of NBS 18 grains revealed that the highly deviated isotopic compositions were limited to the colored grains. By excluding such colored grains, we could also obtain the homogeneous delta(13)C and delta(18)O values (less than 0.18 per thousand and less than 0.16 per thousand S.D., respectively) for NBS 18. We conclude that NBS 19, IAEA-CO-1, or pure grains in NBS 18 are suitable to be used as the standard reference material for delta(13)C, and that either NBS 19 or pure grains in NBS 18 are suitable to be used as the reference material for delta(18)O during the grain-scale isotopic analyses of calcite.  相似文献   

7.
Fossil fuel combustion is the second largest anthropogenic source of nitrous oxide (N2O) after agriculture. The estimated global N2O flux from combustion sources, as well as from other sources, still has a large uncertainty. Herein, we characterize automobile sources using N2O isotopomer ratios (nitrogen and oxygen isotope ratios and intramolecular site preference of 15N, SP) to assess their contributions to total global sources and to deconvolute complex production/consumption processes during combustion and subsequent catalytic treatments of exhaust. Car exhaust gases were sampled under running and idling state, and N2O isotopomer ratios were measured by mass spectrometry. The N2O directly emitted from an engine of a vehicle running at constant velocity had almost constant isotopomer ratios (delta15Nbulk = -28.7 +/- 1.2 per thousand, delta18O = 28.6 +/- 3.3 per thousand, and SP = 4.2 +/- 0.8 per thousand) irrespective of the velocity. After passing through catalytic converters, the isotopomer ratios showed an increase which varied with the temperature and the aging of the catalysts. The increase suggests that both production and consumption of N2O occur on the catalyst and that their rates can be comparable. It was noticed that in the idling state, the N2O emitted from a brand new car has higher isotopomer ratios than that from used cars, which indicate that technical improvements in catalytic converters can reduce the N2O from mobile combustion sources. On average, the isotopomeric signatures of N2O finally emitted from automobiles are not sensitive to running/idling states or to aging of the catalysts. Characteristic average isotopomer ratios of N2O from automobile sources are estimated at -4.9 +/- 8.2 per thousand, 43.5 +/- 13.9 per thousand, and 12.2 +/- 9.1 per thousand for delta15Nbulk, delta18O, and SP, respectively.  相似文献   

8.
Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO(3)(-) in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying delta(18)O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO(3)) with low delta(18)O and USGS35 (NaNO(3)) with high delta(18)O and 'mass-independent' delta(17)O. The procedure used to produce USGS34 involved equilibration of HNO(3) with (18)O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO(3)(-) reference materials with a range of delta(18)O values and normal (mass-dependent) (18)O:(17)O:(16)O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (alpha) between [NO(3)(-)] and H(2)O decreases with increasing temperature from 1.0215 at 22 degrees C to 1.0131 at 100 degrees C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high (17)O:(18)O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO(3) (-) isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO(3)(-) samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of +/-0.2-0.3 per thousand, 1sigma): IAEA-N3 has delta(18)O = +25.6 per thousand and delta(17)O = +13.2 per thousand; USGS32 has delta(18)O = +25.7 per thousand; USGS34 has delta(18)O = -27.9 per thousand and delta(17)O = -14.8 per thousand; and USGS35 has delta(18)O = +57.5 per thousand and delta(17)O = +51.5 per thousand.  相似文献   

9.
Summary Ten new Agricultural/Food Reference Materials (RMs) were characterized with respect to their elemental compositions via an interlaboratory characterization (certification) campaign. Chemical analyses were conducted in 73 cooperating laboratories applying 13 major classes of independently different analytical methods. A total of 213 best estimate values, and 65 informational values were obtained for Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W and Zn in the following RMs: Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438).  相似文献   

10.
An alternative calibration procedure for use when performing carbon isotope ratio measurements by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) has been developed. This calibration procedure does not rely on the corrections in-built in the instrument software, as the carbon isotope ratios of a sample are calculated from the measured raw peak areas. The method was developed for the certification of a urine reference material for sports drug testing, as the estimation of measurement uncertainty is greatly simplified. To ensure that the method is free from bias arising from the choice of calibration material and instrument, the carbon isotope ratios of steroids in urine extracts were measured using two different instruments in different laboratories, and three different reference materials (CU/USADA steroid standards from Brenna Laboratory, Cornell University; NIST RM8539 mineral oil; methane calibrated against NIST RM8560 natural gas). The measurements were performed at LGC and the Australian National Measurement Institute (NMI). It was found that there was no significant difference in measurement results when different instruments and reference materials were used to measure the carbon isotope ratio of the major testosterone metabolites androsterone and etiocholanolone, or the endogenous reference compounds pregnanediol, 11- ketoetiocholanolone and 11β-hydroxyandrosterone. Expanded measurement uncertainties at the 95% coverage probability ranged from 0.21‰ to 1.4‰, depending on analyte, instrument and reference material. The measurement results of this comparison were used to estimate a measurement uncertainty of δ(13)C for the certification of the urine reference material being performed on a single instrument using a single reference material at NMI.  相似文献   

11.
Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the delta(34)S isotopic composition of plants, animals and soils. We found that the online technology for automated delta(34)S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO(2) produced, and as a result calculated delta(34)S values were often 1-3 per thousand too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO(2)-SiO(2) buffering method that minimizes detrimental oxygen isotope variations in SO(2).  相似文献   

12.
Three stable isotope ratios, D/H, (13)C/(12)C and (18)O/(16)O, are measurable in ethanol, an important organic compound that is used as a material for food and beverages, fuel and chemical feedstock, and as a substance related to metabolism. We developed a simple and rapid method of measurement of three isotope ratios of ethanol in aqueous solution at millimole levels using gas chromatography-high-temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS) combined with solid-phase microextraction (SPME). Using this method, the delta value for ethanol was determined in 30 min for deltaD and delta(13)C, and in 75 min for delta(18)O with precisions of +/-9 per thousand, +/-0.3 per thousand and +/-0.7 per thousand, respectively, for deltaD, delta(13)C, and delta(18)O. An advantage of this process is that it requires no distillation for ethanol purification. The method is useful for small quantities of analyte with low ethanol concentrations, which is expected for environmental and metabolic studies.  相似文献   

13.
Elemental analyzer/continuous flow isotope ratio mass spectrometry (EA/CF-IRMS) has become a standard procedure for the determination of delta(34)S values. Common procedures are, however, frequently less than satisfactory for organic as well as for mineral samples with very low concentrations of sulfur (<2000 ppm). Here we present a method which employs cold trapping of SO(2) to adjust the gas concentration for subsequent isotope signature determination. Analytical accuracy is comparable with common EA/CF-IRMS analysis without trapping, showing a precision of better than +/-0.4 per thousand in delta(34)S (1 SD). The virtual absence of memory effects was established by analyzing adjacent samples exhibiting a large difference in delta(34)S and by prolonged freezing of the carrier gas, yielding virtually no S concentration peak. The method was tested using less than 15% (6 microg) of the S required for a conventional isotope analysis at comparable signal intensity. Even smaller samples can be analyzed with high precision. This facilitates the on-line delta(34)S determination in small biological and mineral samples, minimizing matrix effects in various materials including sandstone, soil, and plant samples.  相似文献   

14.
On-line delta34S analysis of sulfate using an elemental analyzer has a number of advantages vs. conventional off-line techniques, such as ease of operation, rapidity, and the requirement for small amounts of material. Although the analyses are performed by converting sulfate into SO2 gas, the effect of sulfate-delta18O composition upon the SO2-delta18O composition and the value of delta66 during elemental analysis, and ultimately the calculated sulfate-delta34S composition, has rarely been addressed. Three BaSO4 samples were prepared with known identical delta34S compositions, but with a wide range of delta18O compositions. delta18O values were shown to range over 40 per thousand, but conventional on-line delta34S analyses verified that the sulfate-delta34S compositions were identical. These results indicate that conventional on-line analysis of sulfate-delta34S is unaffected by the value of sulfate-delta18O, and suggest that sulfide-delta34S standards can be used to calibrate sulfate-delta34S analyses (and vice versa). Moreover, these results suggest that it may be possible to use on-line sulfur isotope analysis of SO2 to measure delta33S and Delta33S in addition to delta34S, as a faster and safer alternative to the SF6 technique currently utilized, and hence promote further study of mass-independent sulfur isotope fractionation effects.  相似文献   

15.
Chlorine isotope fractionation during preparative capillary gas chromatography (pcGC) was investigated using 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as a model compound for semi-volatile organochlorine (OCl) molecules. Chlorine isotope analysis by thermal ionization mass spectrometry revealed no significant alteration of the chlorine isotope composition when the whole peaks were collected in pcGC (delta37Cl -3.2 per thousand versus -3.6 per thousand for the unprocessed DDT, +/-0.5 per thousand SD). However, distinct isotope fractionations were measured for the front (delta37Cl -5.1 per thousand) and tail (delta37Cl -1.8 per thousand) segments of partially collected samples. Isolation of individual OCls by pcGC enables accurate off-line chlorine isotope analysis, and thus facilitates the investigation of naturally occurring OCls.  相似文献   

16.
Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a delta13C value of -26.24 per thousand relative to VPDB and a delta15N value of -4.52 per thousand relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a delta13C value of +37.76 per thousand and a delta15N value of +47.57 per thousand. The delta13C and delta15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (delta13C=+1.95 per thousand ), L-SVEC lithium carbonate (delta13C=-46.48 per thousand ), IAEA-N-1 ammonium sulfate (delta15N=0.43 per thousand ), and USGS32 potassium nitrate (delta15N=180 per thousand ) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of delta13C is better than 0.13 per thousand, and that of delta15N is better than 0.13 per thousand in 100-microg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a delta13C value for NBS 22 oil of -29.91 per thousand, in contrast to the commonly accepted value of -29.78 per thousand for which off-line blank corrections probably have not been quantified satisfactorily.  相似文献   

17.
Isotope effects on fluorine chemical shifts induced by heteroatoms bonded covalently to a carbon atom bearing fluorine atoms were studied. For each compound, the isotope-induced chemical shifts 2delta19F(X) through two bonds were measured for the heteroatom (X = 29/28Si, 30/28Si, 34/32S and 80/77Se). The 1delta19F(13/12C) values for the carbon bonded to the fluorine atoms were also recorded. Examination of the 19F NMR data showed homogeneity of the isotope-induced chemical shifts along the rows of the periodic table and regularity down the columns (from 10 to 15 ppb per mass unit for the second row to 0.4 ppb for the fourth row). It became negligible for atoms of the fifth row.  相似文献   

18.
Coprecipitation of nitrate and sulfate by barium has probably resulted in significant error in numerous studies dealing with the oxygen isotopic composition of natural sulfates using chemical/thermal conversion of BaSO(4) and analysis by isotope ratio mass spectrometry. In solutions where NO(3) (-)/SO(4) (2-) molar ratios are above 2 the amount of nitrate coprecipitated with BaSO(4) reaches a maximum of approximately 7% and decreases roughly linearly as the molar ratio decreases. The fraction of coprecipitated nitrate appears to increase with decreasing pH and is also affected by the nature of the cations in the precipitating solution. The size of the oxygen isotope artifact in sulfate depends both on the amount of coprecipitated nitrate and the delta(18)O and Delta(17)O values of the nitrate, both of which can be highly variable. The oxygen isotopic composition of sulfate extracted from atmospheric aerosols or rain waters are probably severely biased because photochemical nitrate is usually also present and it is highly enriched in (18)O (delta(18)O approximately 50-90 per thousand) and has a large mass-independent isotopic composition (Delta(17)O approximately 20-32 per thousand). The sulfate delta(18)O error can be 2-5 per thousand with Delta(17)O artifacts reaching as high as 4.0 per thousand. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Sulphur isotope analysis (delta(34)S) is increasingly identified as a valuable tool for source differentiation and the determination of trophic level in food webs, but there are still many uncertainties associated with the interpretation of delta(34)S data. To investigate the effects of temperature, ration, body size and age on sulphur trophic fractionation (Deltadelta(34)S) in fish, we reared European sea bass (Dicentrarchus labrax) on identical diets at 11 and 16 degrees C at three ration levels for over 600 days. Deltadelta(34)S was between 0 and -1 per thousand. The effect of temperature on Deltadelta(34)S was small and inconsistent, varying over the course of the experiment and depending on ration. This contrasts with temperature effects on bass Deltadelta(13)C and Deltadelta(15)N, where Deltadelta(13)C increases at warm temperatures while Deltadelta(15)N falls. Body size and age had a positive relationship with Deltadelta(34)S but the relationship with size was not significant for bass that weighed >20 g. As Deltadelta(34)S is small and the range in delta(34)S of potential diet items can be much greater than the range in delta(13)C or delta(15)N, our results show that sulphur stable isotopes are particularly useful for source differentiation in fish.  相似文献   

20.
Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号