首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Thermal conductivity of paramagnetic Tb3Ga5O12 (TbGG) terbium-gallium garnet single crystals is investigated at temperatures from 0.4 to 300 K in magnetic fields up to 3.25 T. A minimum is observed in the temperature dependence κ(T) of thermal conductivity at T min = 0.52 K. This and other singularities on the κ(T) dependence are associated with scattering of phonons from terbium ions. The thermal conductivity at T = 5.1 K strongly depends on the magnetic field direction relative to the crystallographic axes of the crystal. Experimental data are considered using the Debye theory of thermal conductivity taking into account resonance scattering of phonons from Tb3+ ions. Analysis of the temperature and field dependences of the thermal conductivity indicates the existence of a strong spin-phonon interaction in TbGG. The low-temperature behavior of the thermal conductivity (field and angular dependences) is mainly determined by resonance scattering of phonons at the first quasi-doublet of the electron spectrum of Tb3+ ion.  相似文献   

2.
This paper reports on a study of the magnetic properties, magnetoresistance, and phase transitions in the semiconducting manganite multiferroics Tb0.95Bi0.05MnO3 and Eu0.8Ce0.2Mn2O5 whose dielectric properties have been a subject of an earlier study. An analysis of these properties has led us to the conclusion that the above crystals at temperatures T ≥ 180 K undergo phase separation with the formation of a dynamic periodic alternation of quasi-2D layers of manganese ions in different valence states, i.e., charge-induced ferroelectricity. This state exhibits a giant permittivity and ferromagnetism in the layers containing Mn3+ and Mn4+ ions. At low temperatures (T < 100 K), the phase volume is occupied primarily by the dielectric phase. Studies of the magnetic properties and the effect of the magnetic field on the dielectric properties of crystals substantiate the scenario of the formation of a state with giant permittivity put forward by us. At low temperatures, Tb0.95Bi0.05MnO3 exhibits features at the points of phase transitions in pure TbMnO3. A ferromagnetic moment is observed to exist at all the temperatures covered. At the boundaries of the quasi-2D layers, magnetic-field-induced jumps of the electrical resistivity caused by metamagnetic transitions in the layers with Mn3+ and Mn4+ ions are observed. At temperatures T ≥ 180 K, the electrical resistivity undergoes a periodic variation in a magnetic field which is a manifestation of carrier self-organization. A high magnetic field is capable of shifting the phase transition from 180 K to higher temperatures and inducing additional phase transitions.  相似文献   

3.
The effect of Ce3+ and Pr3+ ions on spectral-kinetic characteristics of luminescence of lithium–phosphate–borate glasses is studied. It is shown that terbium ion luminescence caused by transitions from 5D3 and 5D4 multiplets to the ground 7FJ term is detected in samples containing Tb3+/Ce3+ and Tb3+/Pr3+. It has been found that an increase in the concentration of cerium ions from 0.2 to 1 wt % leads to an increase in the intensity of main luminescence bands of terbium ions. In Tb3+/Pr3+ glasses, a decrease in the relative light yield is observed with an increase in the concentration of Pr3+ ions. Processes of energy transfer between Tb3+/Ce3+ and Tb3+/Pr3+ ions are discussed.  相似文献   

4.
Low-temperature measurements of the absorption spectra of linearly polarized light are performed by Tb3+ ions of paramagnetic Tb3Ga5O12 and magnetically ordered Tb3Fe5O12 crystals in the optical transition domains7F67F0,7F67F1 in a transverse magnetization geometry. It is shown that at T = 100 K an abrupt anisotropy of the Tb3+ ion absorption spectra is observed in a terbium ferrite-garnet depending on the orientation of the magnetization vector I relative to the crystallgraphic axes, where the strongest changes in energetic level structure are noted at 18–25° angles between I and the [110] axis. Reduction of the temperature to 30 K results in isotropization of the spectra, which is associated with a high local anisotropy of the magnetic moment of the terbium ion in the ferrite-garnet structure at low temperatures. Dispersion dependences are obtained for the absorption index and the contribution to the refractive index n' due to the Tb3+ optical transitions being examined.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 102–107, March, 1988.In conclusion, the authors are grateful to G. S. Krinchik for stimulation of this research and useful discussions and to A. I. Popov for useful discussion.  相似文献   

5.
The influences of gallium substitution for terbium in Gd60Tb40 on the phase formation, Curie temperature and magnetic entropy change have been investigated. A series of Gd60Tb40−xGax with x=0, 1, 3 and 5 alloys were prepared by arc-melting method. The X-ray diffraction (XRD) analysis reveals that a small amount of Ga substitution for terbium in Gd60Tb40 can form the solid solution (Gd, Tb). The Curie temperature (Tc) increases from 270 K for Gd60Tb40 to 297 K for Gd60Tb37Ga3, while the maximum magnetic entropy changes ΔSM, max decreases from 5.15 J/K kg for Gd60Tb40 to 3.32 J/K kg for Gd60Tb37Ga3 with increasing the Ga content.  相似文献   

6.
The various mechanisms involved in the green emission of KCaLa1?x?yCexTby(PO4)2 under UV excitation are analyzed for a weak terbium concentration (y = 0.05). Ce3+ → Tb3+ transfer can be described by the Dexter model, but only for a weak cerium concentration. For higher cerium contents the cerium lifetime temperature dependence can be fitted by using a model involving energy migration between Ce3+ ions before Ce3+ → Tb3+ transfer. The investigation of the variation of the terbium emission vs temperature involves the presence of energy-trapping defects in the material.  相似文献   

7.
The optical absorption and photoluminescence emission spectra of terbium doped sodium and lithium aluminium silicate glasses have been measured as a function of terbium concentration. Optical absorption has been measured over the wavelength range from 250 nm to 40 μm and the absorption bands attributed to Tb3+ ions have been identified. Luminescence emission occurs in two groups of bands in the blue and in the green. The green 5D47FJ emission is more intense than the blue 5D37FJ. The green luminescence is enhanced at the expense of the blue when the Tb3+ ion concentration reaches 0.5 molar%, which corresponds to an ion separation of 20 Å. The green emission is quenched when the Tb3+ ion concentration exceeds 5 molar%, corresponding to an ion separation of 9.5 Å. It is concluded that energy transfer from 5D3 to 5D4 levels begins at Tb3+ ion separations of 20 Å, and that the process is multipolar. Exchange dipole processes set in at 9.5 Å and quench the green emission. The ion separations at which the two processes occur in silicate glasses are much larger than those at which similar processes set in crystalline material. This enhancement of energy transfer processes in silicate glass is attributed to inhomogeneous broadening of the absorption and emission bands. The detailed structure of the emission bands, particularly that of the 5D47F6,5,4 doublets, is used to suggest that the Tb3+ ions occupy two different sites with rhombohedral and cubic symmetries.  相似文献   

8.
Fluorescence spectra of crystalline tetracene have been recorded in the temperature range 120 to 300 K under hydrostatic pressure up to 600 MPa. From discontinuities in both emission spectra and spectral intensities it is concluded that two phase transitions occur. The room temperature phase is transformed to a low temperature phase/high pressure phase I at TIt (p = 0) = 182 K, the temperature coefficient being dTIt/dp = 0.395 K/MPa. The phase transition is induced by a decrease of the specific volume under pressure and/or upon cooling. Lack of a significant shift of the origin of the fluorescence band near TIt at constant pressure is an artifact resulting from the neglect of reabsorption effects. The Stokes shift is 260 cm-1, independent of temperature and crystal modification. In accord with previous Raman data a second phase transition occurs at TIIt (p) = 143 K, the pressure shift being dTIIt/dp = 0.088 K/MPa.In addition, the shift of the triplet energy as a function of pressure as well as the pressure-dependence of the rate constants governing fission of a singlet exciton into a pair of triplets is discussed utilizing their magnetic field dependences.  相似文献   

9.
The transmission spectra of HoFe3(BO3) multiferroic single crystals are studied by optical Fourier-transform spectroscopy at temperatures of 1.7–423 K in polarized light in the spectral range 500–10 000 cm–1 with a resolution up to 0.1 cm–1. A new first-order structural phase transition close to the second-order transition is recorded at Tc = 360 K by the appearance of a new phonon mode at 976 cm–1. The reasons for considerable differences in Tc for different samples of holmium ferroborate are discussed. By temperature variations in the spectra of the f–f transitions in the Ho3+ ion, we studied two magnetic phase transitions, namely, magnetic ordering into an easy-plane structure as a second-order phase transition at TN = 39 K and spin reorientation from the ab plane to the c axis as a first-order phase transition at TSR = 4.7 ± 0.2 K. It is shown that erbium impurity in a concentration of 1 at % decreases the spin-reorientation transition temperature to TSR = 4.0 K.  相似文献   

10.
Optically efficient cerium and terbium doped lanthanide fluoride (La1−xyCexTby)F3 nanocrystals with different doping concentrations have been synthesized by a hydrothermal route in the presence of ethylenediamine tetraacetic acid disodium salt (EDTA). The results showed that the formation of nanocrystals with different morphologies depends on terbium ion Tb3+ doping concentration, but independent of cerium ion Ce3+ doping concentration. With increase in Tb3+ doping concentration, the morphologies of nanocrystals evolved from a spherical shape to a plated-like one. In addition, both the photoluminescence quantum yield (PL QY) and the fluorescence lifetime of nanocrystals increased with the increase in Ce3+ doping concentration in cerium and terbium co-doped system. The PL QY reached up to 55%, and the lifetime up to 7.3 ms. Transmission electron microscopy (TEM), X-ray diffraction (XRD), selected area electron diffraction (SAED), X-ray fluorescence (XRF), energy dispersive spectroscopy (EDS), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) and infrared (IR) spectroscopies were employed to characterize the properties of nanocrystals. The growth mechanism of nanocrystals with different morphologies and optical properties of nanocrystals with different doping concentrations were investigated.  相似文献   

11.
Water clusters (H2O)6 are simulated by the Monte Carlo method with the Metropolis function at various temperatures (T 1 = 273 K, T 2 = 298 K, and T′1= 373 K) and densities (ρ1 = 0.9998 g/cm3, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system. It is established that the number of retained most probable configuration types at ρ1 = 0.9998 g/cm3 during temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K is smaller than at ρ3 = 0.00059 g/cm3. This result was acquired on the background of the following invariable parameters of the system with the same temperature transitions for each of three values of density: (i) the average number of retained most probable configuration types, (ii) the average fraction of weight coefficients of the most probable configuration types, and (iii) the average potential energy. The configuration type that was retained among the most probable configuration types of the system for all values of density (ρ1 = 0.9998 g/cm2, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system for temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K was also revealed.  相似文献   

12.
The heat capacity of the layer compound, tetrachlorobis (methylammonium) manganese II, (CH3NH3)2MnCl4, has been measured over the range 10K <T<300K. In this region, two structural phase transitions have been observed previously by other techniques: one transition is from a monoclinic low temperature (MLT) phase to a tetragonal low temperature (TLT) phase, and the other is from TLT to an orthorhombic room temperature (ORT) phase. The present experiments have shown that the lower transition (MLT→TLT) occurs at T = 94.37±0.05K with ΔHt = 727±5 J mol?1 and ΔSt = 7.76±0.05 J K?1 mol?1, and the upper transition (TLT→ORT) takes place at T = 257.02±0.07K with ΔHt = 116±1J mol?1 and ΔSt = 0.451±0.004 J K?1mol?1. These results are discussed in the light of recent measurements on (CH3NH3)2CdCl4, and also with regard to a recent theoretical model of the structural phase transitions in compounds of this type.In addition to the structural phase transitions, (CH3NH3)2MnCl4 also undergoes magnetic ordering at T < 150K. The magnetic component to the heat capacity, as deduced from a corresponding states comparison of the heat capacity of the present compound with that of the Cd compound, is shown to be consistent with the behaviour expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

13.
Gadolinium gallium garnet single-crystal films containing terbium are grown through liquid-phase epitaxy from a supercooled solution melt in the PbO-B2O3 system. The optical absorption spectra in the wavelength range 0.2–10.0 μm and the luminescence spectra excited by synchrotron radiation with energies in the range 3.5–30.0 eV are investigated at temperatures of 10 and 300 K. It is revealed that the optical absorption spectra contain an absorption band with the maximum at a wavelength λ ≈0.260 μm, which corresponds to the spin-allowed electric dipole transition between the electronic configurations 4f 8(7 F 6) → 4f 7(8 S)5d of the Tb3+ ions. The narrow low-intensity absorption bands attributed to the 4f → 4f transitions from the 7 F 6 ground level to the 7 F 0–5 multiplet levels of the Tb3+ ions are observed in the wavelength range 1.7–10.0 μm. In the luminescence spectra measured at a temperature of 10 K, the highest intensity is observed for a band with the maximum at a wavelength λ ≈ 0.544 μm, which is associated with the 5 D 47 F 5 radiative transition in the Tb3+ ion.  相似文献   

14.
Structural phase transitions in the lipid-like bilayer material [(CH2)12(NH3)2]CuCl4 have been observed using differential thermal scanning. The compound shows an irreversible thermochromic transition at ? 465 K and three reversible transitions at T 1 = 433 ± 4 K and T 2 = 411 ± 2 K and T 3 = 358 K. The transition at 350 K is ascribed to chain melting. The other two correspond to crystalline phase transformation.

Phase (IV) T3 = 358 ± 2K Phase (III) T2 = 411 ± 2K Phase (II) T1 = 433 ± 4K Phase (I)

Dielectric permittivity is studied as a function of temperature in the range 300-440 K and frequency, range (60 Hz-100 kHz). It confirms the observed transitions. The dielectric permittivity reflects rotational and conformational transitions for the compound. The variation of the real part of the conductivity with temperature is thermally activated in the temperature range above 350 K, with frequency-dependent activation energy, the values of activation energy lie in the range of ionic hopping. The dependence of the conductivity on frequency follows the universal power law σ = σ0 + A(T) ω s ( T ) with 0<s<1. Comparison of this material with other members of the series is discussed  相似文献   

15.
Optical transitions in KPb2Cl5:Tb3+ crystals are studied experimentally and theoretically. The absorption cross-section spectra are plotted and the oscillator strengths of transitions from the ground terbium state to excited multiplets are determined. Intensity parameters Ωt for KPC:Tb3+ are determined by the Judd–Ofelt method to be Ω2 = 2.70 × 10–20 cm2, Ω4 = 7.0 × 10–20 cm2, and Ω6 = 0.72 × 10–20 cm2. These values were used to calculate such characteristics of spontaneous radiative transitions as oscillator strengths, probabilities of radiative transitions, and radiative lifetimes. The emission spectra of KPb2Cl5:Tb3+ crystals upon UV excitation and the decay kinetics of luminescence from the excited 5 D 3 and 5 D 4 levels are studied experimentally, the lifetimes of these levels are determined, and the dependences of the rates of nonradiative relaxation from the excited 7 F j (j = 0–5), 5 D 4, and 5 D 3 levels to lower-lying terbium levels are calculated. It is shown that the population of the 5 D 4 level in KPC:Tb3+ crystals occurs according to a cascade scheme, which leads to quenching of the 5 D 3 level. The calculated data agree well with the known experimental rates of multiphonon nonradiative transitions for Dy:KPC, Nd:KPC, Er:KPC, Tb:KPB, and Nd:KPB crystals. It is shown that transitions in the near-IR (3–6 μm) region in double halide crystals (MPb2Hal5) are almost unquenched and the rates of nonradiative relaxation of excited levels spaced by energy gaps ΔE ji > 1000 cm–1 are W ji NR < 103s–1. This circumstance suggests that it is possible to obtain stimulated emission in KPb2Cl5:RE3+ crystals in the IR spectral region up to 6 μm.  相似文献   

16.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

17.
The strong photoluminescence (PL) of porous anodic alumina (PAA) with terbium deposition is reported. PAA, which has a regular pore morphology, is considered an effective template for fabricating luminescent composites. Tb was deposited onto PAA films by immersion in alcoholic solution with terbium chloride followed by heat treatment. The PL spectra demonstrate typical bands of Tb3+ corresponding to 5D4 → 7Fj (j = 3, 4, 5, 6,) electron transition, with the maximum at 18,360 cm−1 (5D4 → 7F5). The PL mechanism of Tb3+ was systematically studied with annealing temperature. The non-radiative relaxation channel is provided by OH hydroxyls at the surface of porous anodic alumina and, after annealing at 900 °C, the PL yield is highly improved. The PL intensity of Tb3+ increases with laser power and a saturation phenomenon, associated with the ratio of Tb3+ to Tb4+ ions, is observed at approximately 90 W/cm2. Based on a theoretical model, the optical cross-section σ of terbium in PAA is estimated, with a value close to that of other porous materials doped with the rare-earth elements.  相似文献   

18.
Amorphous silica samples doped with 0.1 and 1 mol% of terbium (Tb) were synthesized by the sol–gel method. In addition to the green light associated with 5D47FJ transitions of Tb3+, the sample containing 0.1 mol% also emitted blue light as a result of 5D37FJ transitions during photoluminescence (PL) measurements. As a result of concentration quenching this blue emission was not observed for the samples doped with the higher concentration (1 mol%). However the blue 5D37FJ emission was observed in the 1 mol% doped samples during cathodoluminescence (CL) measurements. Since a rough calculation indicated that the excitation rate in the CL system where the blue emission is observed may be similar to a laser PL system under conditions where the blue emission is not observed, the difference is attributed to the nature of the excitation sources. It is suggested that during the CL excitation incident electrons can reduce non-luminescent Tb4+ ions in the silica, substituting for Si4+ ions, to the excited (Tb3+)? state and that these are responsible for the blue emission, which does not occur during PL excitation.  相似文献   

19.
Tb3+-doped Na3YSi2O7 phosphors were prepared by the sol–gel method and then characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, and cathodoluminescence spectroscopy. The XRD results reveal that the Tb3+ ions have been introduced as dopants into the Na3YSi2O7 host lattice. Under low-voltage electron beam excitation, the phosphors exhibit the characteristic emissions of Tb3+ (5 D 3,47 F J , J=3–6 transitions). The luminescence color of the phosphors can be tuned from greenish-blue to bluish-green and to green by controlling the Tb3+ concentration within the 0.0005–0.15 (x value). The optimum Tb3+ doping concentration is 10 mol%, and the “dead voltage” is approximately 1.35 kV. All results indicate that the sample is a phosphor candidate for field-emission displays.  相似文献   

20.
A spectroscopic study is carried out in which the effects of added Ca2+ and Ru4+ transition metal ions on some characteristics of the emission of Gd2O2S : Tb3+ phosphors (energy levels, intensities, lifetimes) are examined and compared. In order to distinguish the Tb3+ emissions from impurity ones, the electronic energy levels of trivalent terbium are determined and the energy level scheme is completed by a crystal field analysis. The optical spectra reveal no terbium doped impurity phase; however, other rare earth ions present as impurities in the starting materials are detected. They are identified, and the influence of the added Ca2+ and Ru4+ on their emission lines is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号