首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxypropylcellulose films are used as the alignment substrate in a liquid crystal bistable electro-optical device. These alignment films were characterized by atomic force microscopy. The electro-optical behaviour of this device, which operates in the Clark-Lagerwall mode, is identical to that observed for typical SSFLC cells. In particular the bistability of the cell was clearly observed, the threshold voltage was measured and an estimation of the anchoring energy of the LC mixture used, in this type of system, was made.  相似文献   

2.
A novel vertical alignment film for nematic liquid crystals is reported based on electrostatic self-assembly of alkyl sulfonic salts in aqueous solution. A series of self-assembled films with different alkyl chain lengths were prepared and used as alignment films. It was revealed that only when the number of carbon atoms in the alkyl chain approaches 11 or larger, could the self-assembled film induce vertical alignment of liquid crystals. We also found that the homeotropic alignment of liquid crystals was related to the surface roughness of self-assembled films. In addition, this vertical alignment film showed good electro-optical characteristics and excellent thermal stability.  相似文献   

3.
Liquid crystal (LC) alignment layers were prepared by fabricating solution-processed HfZnO films, annealing them, and treating them with ion beam (IB) irradiation, and the effect of annealing temperature upon the resulting film properties was studied. Homogeneous LC alignment was achieved on IB-irradiated HfZnO films. Topographical changes were observed from field-emission scanning electron microscopy as annealing temperature increased. X-ray photoelectron spectroscopy analysis showed that IB irradiation resulted in oxidation of HfZnO surfaces, which caused the LCs to be oriented more uniformly. The best electro-optical characteristics observed corresponded to the annealing temperature of 200°C. The low optimal annealing temperature for fabricating the HfZnO films suggested that this material has remarkable potential for LCD applications.  相似文献   

4.
The liquid crystal (LC) alignment properties of LC cells fabricated with films of 2-naphthoxymethyl-substituted polystyrenes with different contents of naphthoxymethyl side groups were investigated. The polymer films exhibited good optical transparency in the visible light region (400–700 nm). The LC cells made from the unrubbed films of polymers having more than 57 mol%?of 2-naphthoxymethyl containing monomeric units showed homeotropic LC alignment with a high pretilt angle of about 90o. Good electro-optical characteristics, such as the threshold voltage, response time, voltage holding ratio and residual DC voltage were observed for the LC cells fabricated with the polymer having 100 mol%?of 2-naphthoxymethyl containing monomeric units as an LC alignment layer.  相似文献   

5.
Uniform and defect-free homogeneous alignment of liquid crystal (LC) molecules on solution-derived bismuth-doped tin oxide (TBO) films has been achieved using ion-beam (IB) irradiation. We performed measurements and physicochemical analysis to verify and establish the cause of the successful LC alignment. In addition, we measured the electro-optical characteristics of twisted-nematic cells with IB-irradiated TBO films to explore the suitability of this material for liquid crystal displays (LCDs). The results indicate that this approach will allow the fabrication of high-performance enhanced LCD devices.  相似文献   

6.
This article proposes a methodology to prepare polymer dispersed liquid crystal (PDLC) films working in the reverse-mode operation, where the ion-doped nematic liquid crystals (NLCs) with negative dielectric anisotropy (Δε) were locked by polymer walls. On-state and off-state of films were controlled by an electric field. In the absence of an electric field, it appears to be transparent. In the field, the homogeneous alignment NLCs form dynamic scattering, giving rise to opaque. The effect of the cylindrical holes with different diameters of photo masks and liquid crystal Δε on the electro-optical properties and transmittance wavelength range of 400–3000 nm light of samples were investigated. It was found that it exhibited very good electro-optical characteristics, high contrast ratio and excellent infrared energy-efficient of films used as switchable windows.  相似文献   

7.
A series of poly(methyl methacrylate) derivatives containing polyhedral oligomeric silsesquioxane (POSS) groups (MCP#) were synthesised via free radical polymerisation (FRP) using methacryl isobutyl POSS (MA-POSS) and methyl methacrylate as monomers to investigate liquid crystal (LC) alignment property of these polymer films. The LC cells made from the films of the polymers having 100 mol% of MA-POSS units (MCP100) showed vertical LC alignment having a pretilt angle of about 90°. The vertical LC alignment behaviour on the MCP100 film was ascribed to the very hydrophobic MCP100 surface having the surface energy value smaller than about 23 mJ/m2 generated by the nonpolar bulky POSS group. Good electro-optical characteristics, such as voltage holding ratio (VHR) and residual DC voltage (R-DC), were observed for the LC cells fabricated using MCP100 as a LC alignment layer.  相似文献   

8.
Electro-optically active polymer–liquid crystal composites based on ferroelectric liquid crystals and stretched porous polyethylene films were developed. The alignment of ferroelectric liquid crystals incorporated into the porous polyethylene films with average porous diameter of around 200 nm was observed and studied. It was shown experimentally that these samples containing ferroelectric liquid crystals are flexible electro-optical films exhibiting a saturation electric field near 2·10Vm?1 and a response time of about 30 μs under the action of the saturation field. A simple theoretical model of ferroelectric liquid crystal molecules' complete reorientation in electric fields inside pores of the films has been proposed and confirmed experimentally.  相似文献   

9.
We synthesised a series of vitamin-based and renewable tocopherol-substituted polystyrene (PTOC#, # = 20, 40, 60, 80 and 100), where # is the molar content of tocopherol moiety, using polymer analogous reactions to investigate their liquid crystal (LC) alignment properties. In general, the LC cell fabricated using the polymer film having a higher molar content of tocopherol side group showed vertical LC alignment behaviour. The vertical alignment (VA) behaviour was well correlated with the surface energy value of these polymer films. For example, VA was observed when the surface energy values of the polymer were smaller than about 35.22 mJ/m2 generated by the nonpolar tocopherol moiety having long and bulky carbon groups. Good electro-optical characteristics, such as voltage holding ratio and residual DC voltage, and aligning stabilities at 200°C and ultraviolet irradiation of 10 J/cm2 were observed for the LC cells fabricated using PTOC100 as a LC alignment layer. Therefore, it was first found that the renewable tocopherol-based materials can produce an eco-friendly vertical LC alignment system.  相似文献   

10.
Three novel techniques of polymer dispersed liquid crystal (PDLC) film preparation have been proposed to obtain/induce systematically varying manifold properties in a single device. These three techniques were used to prepare ‘wedge-shaped’, ‘multi-channelled’ and ‘grating type’ PDLC films. Arrangement and configuration of liquid crystal (LC) microstructures inside these PDLC films, which were conveniently divided into different zones, have been investigated using a polarising optical microscope (POM) and scanning electron microscope (SEM). POM images indicate a predominant bipolar structure in all zones of different types of PDLC films but with varying size and density. Further, the electro-optical (EO) properties of PDLC films for different zones have different morphological characteristics as indicated (observed) in POM and SEM images and were dependent on LC droplet shape, size and distribution. Also different zones show different absorbance/transmittance characteristics in the visible range. Thus, our study proposes a single device with manifold properties. Also, the desired properties can be obtained by selecting the suitable zone from the PDLC composite film.  相似文献   

11.
We propose a novel method for homeotropic alignment of liquid crystals (LCs) utilising in situ self-assembly of a low concentration of 4-(4-heptylphenyl)benzoic acids that form hydrogen bond with the indium tin oxide (ITO) substrates. Stable homeotropic alignment in the LC device is achieved with a simple mixing process of benzoic acid derivative in LC media, and it yields electro-optical performance similar to that achieved with the conventional alignment method using polyimides. It is experimentally confirmed that an ultrathin self-assembled molecular layer of 4-(4-heptylphenyl)benzoic acid formed by hydrogen bonding on ITO substrate makes it possible to attain a reliable homeotropic alignment of LCs. Furthermore, this simple approach provides a cost-effective and stable LC alignment layer with fast response time and thermal stability.  相似文献   

12.
In this paper, solution-derived gallium oxide (GaO) films are fabricated for the homogeneous alignment of liquid crystals (LCs) after an ion-beam (IB) irradiation process. GaO thin films are prepared under a variety of temperatures and different IB irradiation intensities, and the physicochemical performances of the fabricated GaO thin films are analysed using a UV-vis spectrometer, an atomic force microscope, and X-ray photoelectron spectroscopy. A higher transmittance of 85.40% from GaO thin film is obtained compared with that of polyimide (PI) film (83.52%), which indicates the feasibility for a GaO thin layer to substitute for a conventional PI layer as an alignment layer. LCs are found to align on the GaO thin film after pre-baking at 100°C and homogeneous and uniform low-IB intensity irradiation. We also determined the electro-optical (EO) characteristics of the twisted nematic (TN) cells fabricated with GaO thin layers and found them to be similar to those of cells fabricated with PI layers. Overall, GaO films achieved via the IB irradiation method are promising LC alignment layers due to the method’s low-temperature solution-derived process.  相似文献   

13.
The application of high intensity electric fields to polymer dispersed liquid crystal (PDLC) films can induce changes in their electro-optical properties and morphology. In particular, a quasilinear electro-optical response to an external electric field can be achieved if an internal built-in d.c. field is induced. In this work, we show how the liquid crystal/polymer weight ratio influences the electro-optical response of 'charged' PDLCs, i.e. of PDLC films after the application of a high intensity electric field. We observed that a quasilinear electro-optical response can be achieved in a well determined range of composition. Larger liquid crystal concentrations are unable to maintain the built-in field, while PDLCs with lower liquid crystal loadings do not allow the onset of a built-in d.c. field.  相似文献   

14.
考察了紫外光固化PDLC膜的电光性能及其温度依赖性,阐述了其作为显示器件的工作稳定性。指出确定PDLC工作温度范围的方法,对PDLC膜中液晶相的N-I转变行为及其与膜的内部结构的关系进行了讨论。  相似文献   

15.
In an effort to obtain an improved liquid crystal (LC) alignment layer for liquid crystal display device applications, amorphous diamond‐like carbon thin films were deposited on ITO‐coated glass substrates by an rf magnetron sputtering technique at room temperature and then treated with plasma in various atmospheres. The polarized images and pretilt angles of the LC cells showed that LC alignment was enhanced by post‐plasma treatments of the films. In Raman and X‐ray photoelectron spectroscopy spectra of the films, an increase in the fraction of sp2‐bonding was observed after post‐plasma treatments of the films. In particular, H2 plasma‐treated film had the largest fraction of sp2‐bonding at the film surface and showed much improved alignment capabilities. These results suggest that π‐bondings of the sp2‐structure at the surface rather than the bulk play an important role in LC alignment.  相似文献   

16.
We achieved vertically aligned (VA) liquid crystals (LCs) on aluminum oxide (Al2O3) films deposited via e-beam evaporation using a rubbing treatment. Uniform and vertical LC alignment was achieved and high thermal stability was obtained using these substrates. By analyzing measurements from optical retardations, we confirm that the LC orientation is adjustable using rubbing treatment. The superior electro-optical characteristics of the VA cells based on Al2O3 films are measured and compared with those based on polyimide layers, indicating that this approach will allow the fabrication of high-performance, advanced LC displays using a conventional rubbing process.  相似文献   

17.
We present a new approach for the alignment process to orient liquid crystal (LC) molecules. The process consists of fabrication of a stamp composed of reactive mesogens (RMs), transfer of RM from the stamp onto polyimide (PI) layers, and LC device fabrication using the resulting RM/PI layers. The RM stamp was made anisotropic by a rubbing treatment, and this anisotropy was transferred to the PI layers via contact imprinting, leading to an achievement of uniform LC alignment. In addition, the pretilt angle of the LC molecules could be controlled by varying the content of homogeneous PI in the PI layers. We describe the effects of high pretilt angle upon the electro-optical (EO) characteristics of twisted-nematic (TN) cells based on the RM transfer film/blended PI layers.  相似文献   

18.
Nematic liquid crystal alignment capabilities and electro-optical performance characteristics have first been embodied in a ZrO2 layer using ion-beam irradiation. The study demonstrates that liquid crystal layers can be aligned homogeneously as a function of the incident angle of the ion beam device, which causes a uniform dense plasma. X-ray photoelectron spectroscopy indicated that full oxidation of the ZrO2 thin-film surfaces was produced by ion irradiation, shifting the Zr 3d spectra to lower binding energies. In addition, the electro-optical performance characteristics of twisted nematic cells on a ZrO2 thin-film layer after ion beam irradiation showed similar characteristics to those of a rubbed polyimide cell.  相似文献   

19.
ABSTRACT

The polymer/liquid-crystal composite materials have been extensively studied for their potential applications. Various optical devices based on this composite material have been proposed and realised. The device performance is highly dependent on the phase separation of this composite material. Here, we investigate the photopolymerisation-induced phase separation in this composite material. Depending on the mass ratios between the polymer and the liquid crystal, the phase separation can be well controlled and subsequently affect the morphological and electro-optical properties. At a fixed ratio, we can realise either phase-separated composite films or conventional polymer-dispersed liquid crystal films with completely different optical properties. By carefully controlling the exposure conditions, the morphologies and electro-optical properties have been studied and optimised in details. With in-depth studies and optimisation, the photopolymerisation-induced phase separation technique could be utilised to realise many different optical functions based on the polymer/liquid-crystal composite materials.  相似文献   

20.
ABSTRACT

In this paper, polymer dispersed liquid crystal (PDLC) films based on epoxy-mercaptan system were prepared by thermal-initiated polymerization. The effects of the liquid crystal (LC) content, the proportion and the functionality of epoxy monomers on the polymer structures and electro-optical properties of the as-made PDLC films were investigated systematically. It was found that the morphologies of the polymer matrix can be altered from polymer meshes to polymer balls by increasing the LC content as well as the functionality of epoxy monomers. Accordingly, the electro-optical properties could be regulated by the morphologies of polymer networks. Especially, the as-made PDLC films with homogeneous porous structures exhibited the optimal electro-optical properties. Consequently, this work offers a meaningful approach to control the microstructures and optimize the electro-optical properties of PDLC films, which indeed can form a wonderful footstone for the wide application of PDLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号