首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Liquid crystals》2001,28(6):861-868
We report second harmonic generation in a ferroelectric liquid crystalline trimer and ferroelectric liquid crystalline dendrimers of first, second and third generation. Thin cells were filled with the compounds by capillary forces at elevated temperature, and cooled from the surface stabilized ferroelectric state to below the glass transition temperature, while kept in an electric field. The cone motion viscosity and the threshold electric field for unwinding of the helix axis of the chiral tilted smectic mesophases were studied separately at elevated temperature, and these data were used to optimize the preparation of the films. The measured response time was between 0.3 and 3ms, which corresponds to a cone motion viscosity between 0.5 and 50 Pa s. Second harmonic generation was studied both at elevated temperature with an electric field and at room temperature with and without electric field. The first generation dendrimer exhibited a strong increase in the second order non-linear optical response with time at room temperature. The d23-coefficient of this dendrimer was approximately four times larger than for the other macromolecules and was 0.045 pm V-1. The relatively large d-coefficient of the first generation dendrimer is ascribed to crystallization, which improved the orientation of the molecular dipoles.  相似文献   

2.
Abstract

The second harmonic generation (SHG) in the ferroelectric liquid crystal (FLC) state has been studied as functions of electric field strength, rotating angle, temperature and molecular structure. It has been confirmed that a sharp angularly phase-matching curve of the SHG controlled by an electric field is observed even in the liquid crystal. The temperature dependences of the phase-matched SHG and Maker fringe in the ferroelectric phase have also been studied, and temperature dependences of non-linear optical coefficients obtained. The SHG in several kinds of FLC and dye doped FLC have also been measured, and the enhancement of SHG realized by means of doping the FLC with several kinds of dye.  相似文献   

3.
The synthesis and characterization of reactive banana-shaped compounds have been carried out, and their ability to be photopolymerized in their SmCP mesophase has been assessed. The presence of a SmCP liquid crystalline phase in these compounds has been confirmed by X-ray studies. The polymerization of these molecules has been demonstrated by calorimetric techniques as well as by the preparation and characterization of SmCP-ordered free films that are mechanically stable at room temperature. Furthermore, polymerized films exhibit second harmonic generation activity at room temperature in the absence of an electric field.  相似文献   

4.
A push–pull chromophore has been synthesized, which is liquid at room temperature and can be crosslinked owing to the presence of two methacrylate moieties. Thin films of the chromophore have been prepared by spin coating, and they have been simultaneously crosslinked and poled under strong electric field. On the poled crosslinked films, the quadratic nonlinear optical (NLO) characterization was performed through nonresonant second harmonic generation measurements at 1368 nm as the fundamental wavelength, yielding a fairly good d33 value of 46 pm/V, with retention of 80% of that value after 2 months at 85 °C. Following the theoretical issue that the quadratic NLO and piezoelectric tensors of a material have the same symmetry properties, and exploiting the easy processing of the chromophore in the liquid phase, we have prepared poled crosslinked samples of the chromophore suitable for piezoelectric tests that were performed using a commercial piezoceramic sample as the reference. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
After annealing the solution cast P(VDF-TrFE) films at elevated temperatures, which were synthesized via a full hydrogenation process from P(VDF-CTFE) with a composition of VDF/TrFE = 80/20(mol%), a series of P(VDF-TrFE) films were fabricated in present work. The crystalline and ferroelectric phases of the films were carefully characterized and their dielectric, ferroelectric and piezoelectric properties were systematically investigated. The improved crystalline and ferroelectric phases in the films induced by annealing at elevated temperatures are responsible for the significant improved electric properties of the films. The optimized annealing temperature is found to be 130 °C and the best performance including the highest dielectric constant of 12.5 at 1 kHz, the largest maximum polarization of 11.21 μC/cm~2 and remnant polarization of 7.22 μC/cm~2, the lowest coercive electric field of 56 MV/m, and the highest piezoelectric coefficient of -25 pC/N is observed.  相似文献   

6.
Abstract

A new electrooptic mode of operation of ferroelectric chiral smectic C liquid crystal displays (LCDs) is proposed and demonstrated. The effect, which is called the deformed helical ferroelectric (DHF) effect, is based on the deformation of the helical structure by weak electric fields. In the unbiased device the smectic layers are arranged in the bookshelf geometry with the helix axis parallel to the electrodes [1]. Systems with a very small pitch (<1 μm) and a large tilt angle are especially well suited for this mode. The key characteristics of DHF-LCDs are: (a) low driving fields (1 Vp-pμm?1 for maximum contrast); (b) grey scale which is approximately linear with the applied electric field; (c) easy alignment even for thick cells using standard wall-aligning methods; and (d) response times at room temperature of 300 μs.  相似文献   

7.
《化学:亚洲杂志》2017,12(1):101-109
A new anionic coordination polymer, [NH4][Ag3(C9H5NO4S)2(C13H14N2)2] ⋅ 8 H2O, with a two‐dimensional structure, has been synthesized by a reaction between silver nitrate, 8‐hydroxyquinoline‐5‐sulfonic acid (HQS), and 4,4′‐trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge‐compensating [NH4]+ group occupy the inter‐lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline–amorphous–crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room‐temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water‐dependent and exhibits a ferroelectric–paraelectric transformation. The temperature‐dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in‐situ IR spectroscopy and PXRD studies. The second‐harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea.  相似文献   

8.
Rheological studies were carried out on concentrated m-cresol solutions of two helical synthetic polypeptides; poly-γ-benzyl-L -glutamate (PBLG; molecular weight, 150,000) and poly-?-carbobenzyloxy-L -lysine (PCBZL; molecular weight, 200,000). Steady shear measurements were made over a range of 0.01–16,000 sec?1 to obtain steady shear viscosity and first normal stress difference. Dynamic viscosity and dynamic storage modulus were measured both by oscillatory shear between cone and plate and also by an eccentric rotating disk device over frequency ranges of 0.1–400 and 0.1–63 rad/sec, respectively. The concentration ranges were such that both liquid crystalline and isotropic solutions were investigated. The previously reported observations of an apparent negative first normal stress difference within a defined range of shear rate for liquid crystalline solutions were confirmed for the PBLG and PCBZL solutions. At high shear rates the peaks in plots of steady shear viscosity against concentration were profoundly suppressed but peaks in first normal stress difference versus concentration were not. The observation of liquid crystalline order in PCBZL/m-cresol solutions at room temperature constitutes evidence that the inverse coil-helix transition temperature is lower in concentrated solutions than in dilute solutions. The critical concentration for formation of the liquid crystalline phase was higher for PCBZL than for PBLG, despite a higher axial ratio, due to helix flexibility.  相似文献   

9.
The preparation of six diol and one triol monomers bearing donor–acceptor chromophores is described. The monomers contain the N,N′-bis(2-hydroxyethyl)aniline unit with various acceptor groups attached in some cases via azo or olefin linkages, at the para position. Acceptors studied include nitro, tricyanovinyl, cyclobutene-1,2-dione, and imidazolidine-2,4-dione. Poled polymer films were prepared by thermal polymerization of these with 2,4-toluenediisocyanate (TDI) in the presence of an electric field generated by a corona tip. The resulting thin (ca. 1 μm), glassy polymer films were shown to exhibit reasonably good second harmonic generation efficiencies. Preliminary results show that the polymers with higher Tg's have the best temporal stability. The polymer derived from the diol bearing an imidazolidine-2,4-dione acceptor shows only a ca. 30% decrease in its second harmonic generation (SHG) signal over 200 days at room temperature, even though it is not crosslinked. We attribute this to hydrogen bonding interactions from the urethane and imidazolidine-2,4-dione groups. A crosslinked film derived from the triol and TDI has an exceedingly stable SHG response at room temperature, and no decrease in the SHG response is observed at 100°C for a few hours. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The second harmonic generation (SHG) in the ferroelectric liquid crystal (FLC) state has been studied as functions of electric field strength, rotating angle, temperature and molecular structure. It has been confirmed that a sharp angularly phase-matching curve of the SHG controlled by an electric field is observed even in the liquid crystal. The temperature dependences of the phase-matched SHG and Maker fringe in the ferroelectric phase have also been studied, and temperature dependences of non-linear optical coefficients obtained. The SHG in several kinds of FLC and dye doped FLC have also been measured, and the enhancement of SHG realized by means of doping the FLC with several kinds of dye.  相似文献   

11.
The first carbosilane dendrimer with peripheral bent-core mesogenic units is reported. This material forms a liquid crystalline phase which is stable over a wide temperature range and forms an LC glass on cooling. Polarizing microscopy, X-ray diffraction, and dielectric and electrooptic investigations reveal the presence of a novel liquid crystalline phase, in which the molecules are tilted and adapt a polar order within the layers, but without long-range correlation between the layers. By applying external electric fields, switching into a ferroelectric organization can be achieved. Once formed the ferroelectric states are stable and can be switched between the different polarization states.  相似文献   

12.
This article reports on developing an efficient synthesis approach to aliphatic polyester dendrimer, poly(thioglycerol‐2‐propionate) (PTP), by combination of thio‐bromo “Click” chemistry with atom transfer nitroxide radical coupling (ATNRC). Through the one‐pot two‐step method, linear polystyrene with hydroxyl end groups (l‐PS‐2OH) was obtained by first atom transfer radical polymerization of styrene and following termination using 4‐(2,3‐dihydroxypropoxy)‐TEMPO (DHP‐TEMPO) to capture the PS macroradicals via ATNRC method. Using l‐PS‐2OH as support, the dendritic repeating units divergently were grown from the hydroxyl end groups via esterification and thio‐bromo “Click” reaction two‐step process. In every generation, the resulting intermediates l‐PS‐d‐PTP (G1‐G4) can be easily isolated from the excessive unreacted monomers by simple precipitation in ethanol without help of time, labor and solvent consuming column chromatographic purification. At last, cleavage of the alkoxyamine group between the PS support and dendrimer at elevated temperature (125 °C) provided the targeted polyester dendrimer PTP up to the fourth generation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1762–1768  相似文献   

13.
Ferroelectric materials exhibit switchable remanent polarization due to reversible symmetry breaking under an applied electric field. Previous research has leveraged temperature‐induced neutral‐ionic transitions in charge‐transfer (CT) cocrystals to access ferroelectrics that operate through displacement of molecules under an applied field. However, displacive ferroelectric behavior is rare in organic CT cocrystals and achieving a Curie temperature (TC) above ambient has been elusive. Here a cocrystal between acenaphthene and 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane is presented that shows switchable remanent polarization at room temperature (TC=68 °C). Raman spectroscopy, X‐ray diffraction, and solid‐state NMR spectroscopy indicate the ferroelectric behavior is facilitated by acenaphthene (AN) rotation, deviating from conventional design strategies for CT ferroelectrics. These findings highlight the relevance of non‐CT interactions in the design of displacive ferroelectric cocrystals.  相似文献   

14.
Fast switching of spontaneous polarization (Ps) is one of the most essential requirements for ferroelectrics used in the field of data storage. However, in contrast to inorganic counterparts, the low operating frequency (<500 Hz) for molecular ferroelectrics severely hinders their large‐scale applications. Herein, for the first time, we achieved the room‐temperature fastest switching of the Ps in a new molecular ferroelectric, N‐methylmorpholinium trinitrophenolate ( 1 ), which displays notable ferroelectricity (Ps=3.2 μc cm?2). Strikingly, electric polarizations of 1 have been switched under a record‐high frequency of 263 kHz, and this performance remains stable without any obvious fatigue after ca. 2×105 switching cycles. To our knowledge, 1 is the first organic ferroelectric to switch polarization at such a high operating frequency, exceeding the majority of organic ferroelectrics, which opens up new possibilities for its potential in the field of non‐volatile memory.  相似文献   

15.
Highly oriented pyroelectric liquid-crystalline polymers were prepared by photopolymerization under the influence of a static electric field from binary mixtures of two acrylate monomers exhibiting chiral smectic C mesomorphism. Both monomers contained nitro groups to yield second order nonlinear optical properties (second harmonic generation) and one of the monomers had two functional groups to yield a crosslinked polymer. The room temperature second order nonlinear susceptibility of the polymers showed during the first two hours a 10 % decrease after which it remained constant during the next 48 days. At elevated temperatures there was a significant difference in the nonlinear optical properties over time between crosslinked and uncrosslinked polymers. The uncrosslinked polymer showed a pronounced loss of second order nonlinear optical activity with time at ≥38°C. The crosslinked polymer showed a much smaller and basically a temperature independent decrease rate in the second order nonlinear optical properties at all the ageing temperatures (23-130°C). Both the loss in mesogen order parameter, very evident for the uncrosslinked polymer, and conformational changes occurring within the mesogens (β mechanism), may account for the observations made.  相似文献   

16.
The coexistence of multiferroic orders has attracted increasing attention for its potential applications in multiple-state memory, switches, and computing, but it is still challenging to design single-phase crystalline materials hosting multiferroic orders at above room temperature. By utilizing versatile ABX3-type perovskites as a structural model, we judiciously introduced a polar organic cation with easily changeable conformations into a tetrafluoroborate-based perovskite system, and successfully obtained an unprecedented molecular perovskite, (homopiperazine-1,4-diium)[K(BF4)3], hosting both ferroelectricity and ferroelasticity at above room temperature. By using the combined techniques of variable-temperature single-crystal X-ray structural analyses, differential scanning calorimetry, and dielectric, second harmonic generation, and piezoresponse force microscopy measurements, we demonstrated the domain structures for ferroelectric and ferroelastic orders, and furthermore disclosed how the delicate interplay between stepwise changed dynamics of organic cations and cooperative deformation of the inorganic framework induces ferroelectric and ferroelastic phase transitions at 311 K and 455 K, respectively. This instance, together with the underlying mechanism of ferroic transitions, provides important clues for designing advanced multiferroic materials based on organic–inorganic hybrid crystals.

An unprecedented tetrafluoroborate-based perovskite reveals the coexistence of ferroelastic and ferroelectric transitions arising from delicate interplay between stepwise frozen organic cations and cooperative deformation of the framework.  相似文献   

17.
Eight aliphatic polyimides have been synthesized and tested as alignment layers for surface stabilized ferroelectic liquid crystals with a number of room temperature ferroelectric mixtures. The cone angles are used as a quantitative measure of the bistability obtained in these cells. The effect of the structure of the polyimides on the cone angles obtained is discussed. It is shown that the structure of the polymer alignment layer strongly influences the cone angle found between the relaxed states in a surface stabilized ferroelectric liquid crystal cell. Highly crystalline polymers give a larger cone angle than less crystalline homologues.  相似文献   

18.
《Liquid crystals》1998,25(4):475-479
First results of investigations of electro-optical properties of liquid crystalline (LC) dendrimers in solution are presented. Measurements of electric birefringence (Kerr effect) and dielectric polarization of first generation carbosilane dendrimers with different ester linked terminal mesogenic groups (cholesteryl, cyanobiphenylyl and 4-methoxyphenyl benzoate) have been carried out using dilute solutions in CCl4. The results show that the dielectric polarization is proportional to the second power of the electric field in accordance with Kerr law. The Kerr constants calculated are close to those of the low molar mass analogues of the corresponding mesogenic groups. Thus the electric birefringence of the LC dendrimer solutions is mainly determined by the electro-optical properties of their terminal mesogenic groups oriented in the electric field independently of the main chain.  相似文献   

19.
The ferroelectric and piezoelectric properties of a new class of polymer ferroelectric and piezoelectric materials, nylon 11/polyvinylidene fluoride (PVF2) bilaminate films, prepared by a co-melt-pressing method, is presented. The bilaminate films exhibit typical ferroelectric D-E hysteresis behavior with a remanent polarization, Pr, of about 75 mC/m2, which is higher than the value of 52 mC/m2 observed for PVF2 or nylon 11 films measured under the same conditions. The coercive field, Ec, of the bilaminate films is ~ 78 MV/m, which is higher than that of either PVF2 or nylon 11 films. Measurements of the temperature dependence of the piezoelectric strain coefficient, d31, and the piezoelectric stress coefficient, e31, were also carried out. The bilaminate films exhibit a piezoelectric strain coefficient, d31, of 41 pC/N at room temperature, which is significantly higher than the PVF2 films (25 pC/N) and the nylon 11 films (3.1 pC/N). When the temperature is increased to 110°C, d31 of the bilaminate films reaches a maximum value of 63 pC/N, more than five times that of PVF2 (11 pC/N) and more than four times that of nylon 11 (14 pC/N) at the same temperature. The piezoelectric stress coefficient, e31, of the bilaminate films shows a value of 109 mC/m2 at room temperature, almost twice that of the PVF2 films (59 mC/m2) and about 18 times that of the nylon 11 films (6.2 mC/m2). Measurement of the temperature dependence of the hydrostatic piezoelectric coefficient, dh, of the bilaminate films also shows an enhancement with respect to the individual components, PVF2 and nylon 11. ©1995 John Wiley & Sons, Inc.  相似文献   

20.
The host–guest complex [(DIPA)([18]crown‐6)](ClO4) ( 1 ; DIPA=2,6‐diisopropylanilinium) was constructed and found to undergo a sequence of phase transitions (IbamPbcnPna21) at T1=278 K and T2=132 K, respectively. Systematic characterizations, such as differential scanning calorimetry, heat capacity, temperature‐dependent dielectric constant, and P–E hysteresis loop, reveal that the centrosymmetric‐to‐polar phase transition at T2 is a paraelectric‐to‐ferroelectric transition. The symmetry breaking was also confirmed by temperature‐dependent second‐harmonic generation effect and X‐ray powder diffraction. The ferroelectric mechanism is attributable to the linear motion of the perchlorate counterions accompanied by the order–disorder transition of the [18]crown‐6 molecules and the anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号