首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In nonlinear electrodynamics a photon does not follow null geodesics of background geometry, but moves along null geodesics of a corresponding effective geometry. Therefore, in the strong deflection limit, in order to study the gravitational lensing of the regular electrically charged black holes obtained by coupling general relativity to nonlinear electrodynamics, one should firstly obtain the corresponding effective geometry, which is a necessary and key step. I obtain the deflection angle of the photon in the strong deflection limit, and further calculate the angular position and magnification of relativistic images. It is found that, the electric charge has significant effect on the gravitational lensing of regular black holes. With the increase of the electric charge q, the angular position of the relativistic images \(\theta _{\infty }\) and the relative magnification \(\mathcal {R}_{m}\) as a function of q decrease, while the angular separation between the outermost relativistic image and the others \(\mathcal {S}\) as a function of q increases. I also discuss the measurement of observables for the black hole at the center of our Galaxy in the cases of regular electrically charged black hole effective metrics.  相似文献   

2.
In this paper, we study gravitational lensing of magnetically charged black hole of string theory as a strong field approximation for the supermassive black hole at the center of NGC4486B. We evaluate light deflection angle numerically, from which we obtain magnifications, Einstein rings and observables for the relativistic images. Finally, we explore time delay between relativistic images when they are on the same as well as opposite side of the lens. It is concluded that charge parameter plays a prominent role in the strong gravitational lensing.  相似文献   

3.
The principal focus of this paper is to study the strong field gravitational lensing in a magnetic charged Reissner-Nordstr?m black hole based on the method of cosmic string. We obtain the new coefficients including the tension of the cosmic strings, the strong field deflection limit coefficients, the deflection angle and the magnification, and obtain the relationship between the cosmic string parameter and the new coefficients. The result shows that the cosmic strings have some important effect on the gravitational lensing in a black hole when they pierce it.  相似文献   

4.
In this paper we have investigated the gravitational lensing phenomenon in the strong field regime for a regular, charged, static black holes with non-linear electrodynamics source. We have obtained the angle of deflection and compared it to a Schwarzschild black hole and Reissner Nordström black hole with similar properties. We have also done a graphical study of the relativistic image positions and magnifications. We hope that this method may be useful in the detection of non-luminous bodies like this current black hole.  相似文献   

5.
We give the formulation of the gravitational lensing theory in the strong field limit for a Schwarzschild black hole as a counterpart to the weak field approach. It is possible to expand the full black hole lens equation to work a simple analytical theory that describes the physics in the strong field limit at a high accuracy degree. In this way, we derive compact and reliable mathematical formulae for the position of additional critical curves, relativistic images and their magnification, arising in this limit.  相似文献   

6.
We study light rays in the static and spherically symmetric gravitational field of the null aether theory (NAT). To this end, we employ the Gauss-Bonnet theorem to compute the deflection angle formed by a NAT black hole in the weak limit approximation. Using the optical metrics of the NAT black hole, we first obtain the Gaussian curvature and then calculate the leading terms of the deflection angle. Our calculations indicate how gravitational lensing is affected by the NAT field. We also illustrate that the bending of light stems from global and topological effects.  相似文献   

7.
Here we consider accelerating and rotating charged Plebanski-Demianski (PD) class of black hole metric as a particle accelerator. We obtain the geodesic motions (timelike, null and spacelike) of particles in a non-equatorial plane around the PD black hole. We find the effective potential, energy, angular momentum, impact parameters, and discuss the circular orbit. We study the center of mass energy of two neutral particles falling from infinity to near the non-extremal horizons (event and Cauchy horizons), extremal horizon, accelerating horizons, and near the center of the PD black hole. Also, we study the collision of a particle and a massless photon. Then we find the center of mass energy due to the collision of two massless photons in the PD black hole background. We compute the redshift and blueshift of the emitted photons by massive particles while light signal travels along null geodesics towards the observer located far away from the source. We study the Penrose process, which occurs within the ergosphere, and examines the particle’s motion with its implications. Here, we analyze the PD black hole shadow’s apparent shape, which forms far away from the black hole. We study the possible visibility of the PD black hole through photon’s shadow and energy emission rate. We also investigate the effect on the shadow of the PD black hole in plasma for a distant observer. We study the strong gravitational lensing by PD black hole. Finally, we analyze the deflection angle, lens equation, position, magnification, Einstein ring and observables by taking the supermassive PD black hole in the Galaxy’s center.  相似文献   

8.
In this paper we study gravitational lensing by STU black holes. We considered extremal limit of two special cases of zero-charged and one-charged black holes, and obtain the deflection angle. We find that the black hole charge increases the deflection angle.  相似文献   

9.
We have developed a realistic, fully general relativistic computer code to simulate optical projection in a strong, spherically symmetric gravitational field. The standard theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole is extended to black hole spacetimes with a repulsive cosmological constant, i.e, Schwarzschild-de Sitterspacetimes. Influence of the cosmological constant is investigated for static observers and observers radially free-falling from the static radius. Simulations include effects of the gravitational lensing, multiple images, Doppler and gravitational frequency shift, as well as the intensity amplification. The code generates images of the sky for the static observer and a movie simulations of the changing sky for the radially free-falling observer. Techniques of parallel programming are applied to get a high performance and a fast run of the BHC simulation code.   相似文献   

10.
We calculate the time delay between different relativistic images formed by black hole gravitational lensing in the strong field limit. For spherically symmetric black holes, it turns out that the time delay between the first two images is proportional to the minimum impact angle. Their ratio gives a very interesting and precise measure of the distance of the black hole. Moreover, using also the separation between the images and their luminosity ratio, it is possible to extract the mass of the black hole. The time delay for the black hole at the center of our Galaxy is just few minutes, but for supermassive black holes with M=108 ÷109 in the neighbourhood of the Local Group the time delay amounts to few days, thus being measurable with a good accuracy.  相似文献   

11.
We consider the metric exterior to a charged dilaton black hole in a de Sitter universe. We study the motion of a test particle in this metric. Conserved quantities are identified and the Hamilton–Jacobi method is employed for the solutions of the equations of motion. At large distances from the black hole the Hubble expansion of the universe modifies the effective potential such that bound orbits could exist up to an upper limit of the angular momentum per mass for the orbiting test particle. We then study the phenomenon of strong field gravitational lensing by these black holes by extending the standard formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter metric. Expressions for the various lensing quantities are obtained in terms of the metric coefficients.  相似文献   

12.
The bending angle of light is a central quantity in the theory of gravitational lensing. We develop an analytical perturbation framework for calculating the bending angle of light rays lensed by a Schwarzschild black hole. Using a perturbation parameter given in terms of the gravitational radius of the black hole and the light ray’s impact parameter, we determine an invariant series for the strong-deflection bending angle that extends beyond the standard logarithmic deflection term used in the literature. In the process, we discovered an improvement to the standard logarithmic deflection term. Our perturbation framework is also used to derive as a consistency check, the recently found weak deflection bending angle series. We also reformulate the latter series in terms of a more natural invariant perturbation parameter, one that smoothly transitions between the weak and strong deflection series. We then compare our invariant strong deflection bending-angle series with the numerically integrated exact formal bending angle expression, and find less than 1% discrepancy for light rays as far out as twice the critical impact parameter. The paper concludes by showing that the strong and weak deflection bending angle series together provide an approximation that is within 1% of the exact bending angle value for light rays traversing anywhere between the photon sphere and infinity.  相似文献   

13.
We review the theoretical aspects of gravitational lensing by black holes, and discuss the perspectives for realistic observations. We will first treat lensing by spherically symmetric black holes, in which the formation of infinite sequences of higher order images emerges in the clearest way. We will then consider the effects of the spin of the black hole, with the formation of giant higher order caustics and multiple images. Finally, we will consider the perspectives for observations of black hole lensing, from the detection of secondary images of stellar sources and spots on the accretion disk to the interpretation of iron K-lines and direct imaging of the shadow of the black hole.  相似文献   

14.
The regular Hayward model describes a non-singular black hole space-time. By analyzing the behaviors of effective potential and solving the equation of orbital motion, we investigate the time-like and null geodesics in the regular Hayward black hole space-time. Through detailed analyses of corresponding effective potentials for massive particles and photons, all possible orbits are numerically simulated. The results show that there may exist four orbital types in the time-like geodesics structure: planetary orbits, circular orbits, escape orbits and absorbing orbits. In addition, when \(\ell \), a convenient encoding of the central energy density \(3/8\pi \ell ^{2}\), is 0.6M, and b is 3.9512M as a specific value of angular momentum, escape orbits exist only under \(b>3.9512M\). The precession direction is also associated with values of b. With \(b=3.70M\) the bound orbits shift clockwise but counter-clockwise with \(b=5.00M\) in the regular Hayward black hole space-time. We also find that the structure of null geodesics is simpler than that of time-like geodesics. There only exist three kinds of orbits (unstable circle orbits, escape orbits and absorbing orbits).  相似文献   

15.
We have studied the null geodesics of the Schwarzschild black hole surrounded by quintessence matter. Quintessence matter is a candidate for dark energy. Here, we have done a detailed analysis of the geodesics and exact solutions are presented in terms of Jacobi-elliptic integrals for all possible energy and angular momentum of the photons. The circular orbits of the photons are studied in detail. As an application of the null geodesics, the angle of deflection of the photons are computed.  相似文献   

16.
An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. This first law of black-hole dynamics describes how a black hole grows and is regular in the limit where it ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role of a stationary Killing vector. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy supply and work terms. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation.  相似文献   

17.
We discuss the fermion stars, the self-gravitating systems of Fermi gases, as possible gravitational lenses. It is supposed that the fermions interact with themselves and other particles only by gravity, so they are the candidates of dark matter. We calculate Einstein deflection angles, study the image configurations, and calculate the magnification factors for a number of fermion stars that range from strong relativistic configurations to nonrelativistic ones. We find that typically there are three images, one Einstein ring and one radial critical curve for both cases. Two of the images are within the Einstein ring, and the other is outside, which may be very far. All these lensing characteristics can help to identify fermion stars as potential lensing objects, thus might give direct evidence that dark fermion stars exist in the universe.  相似文献   

18.
As an example of a dynamical cosmological black hole, a spacetime that describes an expanding black hole in the asymptotic background of the Einstein-de Sitter universe is constructed. The black hole is primordial in the sense that it forms ab initio with the big bang singularity and its expanding event horizon is represented by a conformal Killing horizon. The metric representing the black hole spacetime is obtained by applying a time dependent conformal transformation on the Schwarzschild metric, such that the result is an exact solution with a matter content described by a two-fluid source. Physical quantities such as the surface gravity and other effects like perihelion precession, light bending and circular orbits are studied in this spacetime and compared to their counterparts in the gravitational field of the isolated Schwarzschild black hole. No changes in the structure of null geodesics are recorded, but significant differences are obtained for timelike geodesics, particularly an increase in the perihelion precession and the non-existence of circular timelike orbits. The solution is expressed in the Newman-Penrose formalism.  相似文献   

19.
We study the gravitational lensing scenario where the lens is a spherically symmetric charged black hole (BH) surrounded by quintessence matter. The null geodesic equations in the curved background of the black hole are derived. The resulting trajectory equation is solved analytically via perturbation and series methods for a special choice of parameters, and the distance of the closest approach to black hole is calculated. We also derive the lens equation giving the bending angle of light in the curved background. In the strong field approximation, the solution of the lens equation is also obtained for all values of the quintessence parameter \(w_q\). For all \(w_q\), we show that there are no stable closed null orbits and that corrections to the deflection angle for the Reissner–Nordström black hole when the observer and the source are at large, but finite, distances from the lens do not depend on the charge up to the inverse of the distances squared. A part of the present work, analyzed, however, with a different approach, is the extension of Younas et al. (Phys Rev D 92:084042, 2015) where the uncharged case has been treated.  相似文献   

20.
In this work we investigate the consequences of running gravitational coupling on the properties of rotating black holes. Apart from the changes induced in the space-time structure of such black holes, we also study the implications to Penrose process and geodetic precession. We are motivated by the functional form of gravitational coupling previously investigated in the context of infra-red limit of asymptotic safe gravity theory. In this approach, the involvement of a new parameter \({\tilde{\xi }}\) in this solution makes it different from Schwarzschild black hole. The Killing horizon, event horizon and singularity of the computed metric is then discussed. It is noticed that the ergosphere is increased as \({\tilde{\xi }}\) increases. Considering the black hole solution in equatorial plane, the geodesics of particles, both null and time like cases, are explored. The effective potential is computed and graphically analyzed for different values of parameter \({\tilde{\xi }}\). The energy extraction from black hole is investigated via Penrose process. For the same values of spin parameter, the numerical results suggest that the efficiency of Penrose process is greater in quantum corrected gravity than in Kerr Black Hole. At the end, a brief discussion on Lense–Thirring frequency is also done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号