首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a theoretical investigation of the solution properties of Cu and Ag atoms dissolved in He clusters. Employing our recent ab initio ground state pair potential for Me-He (Me = Ag, Cu), we simulated the species Me@He (n) (n = 2-100) by means of diffusion Monte Carlo (DMC) obtaining exact information on their energetics and the structural properties. In particular, we investigated the sensitivity of structural details on the well depth of the two interaction potentials. Whereas Ag structures the first He solvation layer similarly, to some extent, to a positive ion such as Na(+), Cu appears to require the onset of a second solvation shell for a similar dense structure to be formed despite an interaction well of 28.4 μhartree. An additional signature of the different solution behavior between Ag and Cu appears also in the dependence of the energy required to evaporate a single He atom on the size of the MeHe(n) clusters. The absorption spectrum for the (2)P ← (2)S excitation of the metals was also simulated employing the semi-classical Lax approximation to further characterize Me@He(n) (n = 2-100) using novel accurate interaction potentials between He and the lowest (2)P state of Ag and Cu in conjunction with the Diatomic-in-Molecules approach. The results indicated that Ag exciplexes should not form via a direct vertical excitation into an attractive region of the excited manifolds and that there is an interesting dependence of the shape of the Cu excitation bands on the local structure of the first solvation shell.  相似文献   

2.
We present a detailed study of the energetics, structures, and Bose properties of small clusters of (4)He containing a single nitrous oxide (N(2)O) molecule, from N=1 (4)He up to sizes corresponding to completion of the first solvation shell around N(2)O (N=16 (4)He). Ground state properties are calculated using the importance-sampled rigid-body diffusion Monte Carlo method, rotational excited state calculations are made with the projection operator imaginary time spectral evolution method, and Bose permutation exchange and associated superfluid properties are calculated with the finite temperature path integral method. For N< or =5 the helium atoms are seen to form an equatorial ring around the molecular axis, at N=6 helium density starts to occupy the second (local) minimum of the N(2)O-He interaction at the oxygen side of the molecule, and N=9 is the critical size at which there is onset of helium solvation all along the molecular axis. For N> or =8 six (4)He atoms are distributed in a symmetric, quasirigid ring around N(2)O. Path integral calculations show essentially complete superfluid response to rotation about the molecular axis for N> or =5, and a rise of the perpendicular superfluid response from zero to appreciable values for N> or =8. Rotational excited states are computed for three values of the total angular momentum, J=1-3, and the energy levels fitted to obtain effective spectroscopic constants that show excellent agreement with the experimentally observed N dependence of the effective rotational constant B(eff). The non-monotonic behavior of the rotational constant is seen to be due to the onset of long (4)He permutation exchanges and associated perpendicular superfluid response of the clusters for N> or =8. We provide a detailed analysis of the role of the helium solvation structure and superfluid properties in determining the effective rotational constants.  相似文献   

3.
Diffusion Monte Carlo calculations are performed for ground and excited rotational states of HX(4He)N, complexes with N相似文献   

4.
We perform a theoretical study on the electronic spectroscopy of dilute NO impurity embedded in parahydrogen (p-H(2)). Absorption and emission lineshapes for the A (2)Sigma(+)<--X (2)Pi Rydberg transition of NO in parahydrogen have been previously measured and simulated, which yielded results for the NO/p-H(2) ground and excited state pair potentials [L. Bonacina et al., J. Chem. Phys. 125, 054507 (2006)]. Using these potentials, we performed molecular dynamics simulation, theoretical statistical mechanical calculations of absorption and emission lineshapes, and both equilibrium and nonequilibrium solvation correlation functions for NO chromophore in parahydrogen. Theory was shown to be in good agreement with simulation. Linear response treatment of solvation dynamics was shown to break down due to a dramatic change in the solute-solvent microstructure upon solute excitation to the Rydberg state and the concomitant increase of the solute size.  相似文献   

5.
The X(2)Σ ground and the A(2)Π and B(2)Σ first two excited states of Li-He and Na-He are determined using high level complete active space self-consistent field-multireference configuration interaction ab initio method. The obtained potentials differ from the ones proposed by Pascale [Phys. Rev. A 28, 632 (1983)], more strongly for the ground than for the excited states. Quantum diffusion Monte Carlo studies of small Li(?)He(n) and Na(?)He(n) with n ≤ 5 are performed using a diatomics-in-molecule approach to model the non-pair additive interaction potential. The sensitivity of our results to the A(2)Π and B(2)Σ potentials used is assessed by an analysis of the structure and of the energetics of the clusters. For these small clusters, the physical conclusions are essentially independent of the diatomic curves employed.  相似文献   

6.
The high resolution microwave spectra of He(N)-HCCCN clusters were studied in the size ranges of 1-18 and 25-31. In the absence of an accompanying infrared study, rotational excitation energies were computed by the reptation quantum Monte Carlo method and used to facilitate the search and assignment of R(0) transitions from N > 6, as well as R(1) transitions with N > 1. The assignments in the range of 25-31 are accurate to +/-2 cluster size units, with an essentially certain relative ordering. The rotational transition frequencies decrease with N = 1-6 and then show oscillatory behavior for larger cluster sizes, which is now recognized to be a manifestation of the onset and microscopic evolution of superfluidity. For cluster sizes beyond completion of the first solvation shell the rotational frequencies increase significantly above the large-droplet limit. This behavior, common to other linear molecules whose interaction with He features a strong nearly equatorial minimum, is analyzed using path integral Monte Carlo simulations. The He density in the incipient second solvation shell is shown to open a new channel for long permutation cycles, thus increasing the decoupling of the quantum solvent from the rotation of the dopant molecule.  相似文献   

7.
We review recently developed theories of molecular interactions with helium clusters. Ground state energies and structures are obtained from Monte Carlo and density functional calculations for a variety of impurities and a range of cluster sizes. Of particular interest are chemical potentials, location of the impurity, and shape of the helium density surrounding it. Included in the work summarized here are results for light molecules (H2 and D2) which interact weakly with He and results for heavier molecules (Cl2 and SF6) which interact more strongly with He. Finally, theoretical and experimental results are compared for SF6 in helium clusters.  相似文献   

8.
The structural and thermodynamic properties of Na+(CH3CN)n, I-(CH3CN)n, and NaI(CH3CN)n clusters have been investigated by means of room-temperature Monte Carlo simulations with model potentials developed to reproduce the properties of small clusters predicted by quantum chemistry. Ions are found to adopt an interior solvation shell structure, with a first solvation shell containing approximately 6 and approximately 8 acetonitrile molecules for large Na+(CH3CN)n and I-(CH3CN)n clusters, respectively. Structural features of Na+(CH3CN)n are found to be similar to those of Na+(H2O)n clusters, but those of I-(CH3CN)n contrast with those of I-(H2O)n, for which "surface" solvation structures were observed. The potential of mean force calculations demonstrates that the NaI ion pair is thermodynamically stable with respect to ground-state ionic dissociation in acetonitrile clusters. The properties of NaI(CH3CN)n clusters exhibit some similarities with NaI(H2O)n clusters, with the existence of contact ion pair and solvent-separated ion pair structures, but, in contrast to water clusters, both types of ion pairs adopt a well-defined interior ionic solvation shell structure in acetonitrile clusters. Whereas contact ion pair species are thermodynamically favored in small clusters, solvent-separated ion pairs tend to become thermodynamically more stable above a cluster size of approximately 26. Hence, ground-state charge separation appears to occur at larger cluster sizes for acetonitrile clusters than for water clusters. We propose that the lack of a large Na+(CH3CN)n product signal in NaI(CH3CN)n multiphoton ionization experiments could arise from extensive stabilization of the ground ionic state by the solvent and possible inhibition of the photoexcitation mechanism, which may be less pronounced for NaI(H2O)n clusters because of surface solvation structures. Alternatively, increased solvent evaporation resulting from larger excess energies upon photoexcitation or major solvent reorganization on the ionized state could account for the observed solvent-selectivity in NaI cluster multiphoton ionization.  相似文献   

9.
Within the diffusion Monte Carlo approach, we have determined the structure of isotopically pure and mixed helium droplets doped with one magnesium atom. For pure (4)He clusters, our results confirm those of Mella et al. [J. Chem. Phys. 123, 054328 (2005)] that the impurity experiences a transition from a surface to a bulk location as the number of helium atoms in the droplet increases. Contrarily, for pure (3)He clusters Mg resides in the bulk of the droplet due to the smaller surface tension of this isotope. Results for mixed droplets are presented. We have also obtained the absorption spectrum of Mg around the 3s3p?(1)P(1) ← 3s(2)?(1)S(0) transition.  相似文献   

10.
Many-body potentials for the aqueous Li(+), Na(+), Mg(2+), and Al(3+) ions have been constructed from ab initio cluster calculations. Pure pair, effective pair, effective three-body, and effective polarizable models were created and used in subsequent molecular dynamics simulations. The structures of the first and second solvation shells were studied using radial distribution functions and angular-radial distribution functions. The effective three-body and polarizable potentials yield similar first-shell structures, while the contraction of the O-O distances between the first and second solvation shells is more pronounced with the polarizable potentials. The definition of the tilt angle of the water molecules around the ions is discussed. When a proper definition is used, it is found that for Li(+), Mg(2+), and Al(3+) the water molecules prefer a trigonal orientation, but for Na(+) a tetrahedral orientation (ion in lone-pair direction) is preferred. The self-diffusion coefficients for the water molecules and the ions were calculated; the ionic values follow the order obtained from experiment, although the simulated absolute values are smaller than experiment for Mg(2+) and Al(3+).  相似文献   

11.
氯化钠水溶液的monte Carlo分子模拟研究   总被引:5,自引:0,他引:5  
李春喜  李以圭  杨林昱  陆九芳 《化学学报》2000,58(11):1349-1352
采用MonteCarlo计算机分子模拟方法,研究了氯化钠水溶液在常温和高温情况下粒子的径向分布函数和粒子间各种作用位能的热力学性质。模拟过程采用了NTV正则系综,粒子间的作用能包括离子库仑静电作用,偶极子作用以及色散作用,这些作用构成了电解质溶液的基本框架,模拟结果与微扰理论和平均球近似积分方程理论的预测值进行了比较。  相似文献   

12.
Thick target 7Li(p,n) neutron spectra were measured using a 3He ion chamber in the proton energy range of 1.95 to 2.30 MeV. The fast neutron spectra were collected for various distances from the lithium target as well as for various neutron emission angles. By unfolding the 3He raw data with the iterative van Cittert algorithm, the neutron fluence spectra were obtained. The 3He measured neutron spectra were compared with both analytically computed and Monte Carlo simulated spectra to account for neutron scatterings in the lithium target assembly and in the experimental area. To verify the accuracy of the neutron dose computation, the fast neutron kerma was obtained for each neutron spectrum using the fluence to kerma conversion coefficients and was compared with the measured neutron dose using tissue-equivalent proportional counters. In the position dependence investigation at the 0° emission angle, the analytically computed neutron kerma overestimates the experimental kerma by a factor of two mainly due to neutron moderation. The corresponding neutron kerma from the 3He measured spectra were in agreement with the neutron doses measured using tissue-equivalent proportional counters within 20% for lower proton energies, but the discrepancy increased to ~50% for higher proton energies. In the angular distribution investigation, a notable discrepancy between measured and computed neutron spectra were observed due to the neutron scattering effects in the target assembly and experimental room.  相似文献   

13.
The solubility of carbon dioxide in pure methanol, and in aqueous solutions of methanol, was computed using the Gibbs ensemble Monte Carlo (GEMC) technique for 313, 354, and 395 K at pressures up to 9 MPa. Three solvent mixtures (of methanol and water) with methanol mole fractions of 10, 50, and 75 mole percent (in the gas-free solvent mixture) were studied. The Monte Carlo simulations were conducted in an isothermal-isobaric ensemble applying effective pair potentials for the pure components from literature. Common mixing rules without any adjustable binary interaction parameters were used to describe the interactions between the mixture components. Overall, a good agreement between simulation results and recently published experimental data is achieved.  相似文献   

14.
One- and two-photon excitation spectra of sodium atoms on the surface of helium droplets are reported. The spectra are recorded by monitoring the photoionization yield of desorbed atoms as function of excitation frequency. The excitation spectra involving states with principal quantum number up to n = 6 can be reproduced by a pseudodiatomic model where the helium droplet is treated as a single atom. For the lowest excited states of sodium, the effective interaction potentials for this system can be approximated by the sum of NaHe pair potentials. For the higher excited states, the interaction of the sodium valence electron with the helium induces significant configuration mixing, leading to a failure of this approach. For these states, effective interaction potentials based on a perturbative treatment of the interactions between the valence electron, the alkali positive core, and the helium, as described in detail in the accompanying publication, yield excellent agreement with experiment.  相似文献   

15.
16.
We present in this work the study of small (4)He(N)-Cs(2)((3)Σ(u)) aggregates (2 ≤ N ≤ 30) through combined variational, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) calculations. The full surface is modeled as an addition of He-Cs(2) interactions and He-He potentials. Given the negligible strength and large range of the He-Cs(2) interaction as compared with the one for He-He, a propensity of the helium atoms to pack themselves together, leaving outside the molecular dopant is to be expected. DMC calculations determine the onset of helium gathering at N = 3. To analyze energetic and structural properties as a function of N, PIMC calculations with no bosonic exchange, i.e., Boltzmann statistics, at low temperatures are carried out. At T = 0.1 K, although acceptable one-particle He-Cs(2) distributions are obtained, two-particle He-He distributions are not well described, indicating that the proper symmetry should be taken into account. PIMC distributions at T = 1 K already compare well with DMC ones and show minor exchange effects, although binding energies are still far from having converged in terms of the number of quantum beads. As N increases, the He-He PIMC pair correlation function shows a clear tendency to coincide with the experimental boson-liquid helium one at that temperature. It supports the picture of a helium droplet which carries the molecular impurity on its surface, as found earlier for other triplet dimers.  相似文献   

17.
We present a variational Monte Carlo study of a model one-dimensional electron gas on the continuum, with long-range interaction (1/r decay). At low density, the reduced dimensionality brings about pseudonodes of the many-body wavefunction, yielding nonergodic behavior of naive Monte Carlo sampling, which affects the evaluation of pair correlations and the related structure factors. The problem is, however, easily solved, and we carefully analyzed the structure factors obtained from an optimal trial function, finding good agreement with the exact predictions for a Luttinger-like Hamiltonian with an interaction similar to the one used in the present study.  相似文献   

18.
The rotational excitation spectrum, including the vibrational shift of the rotational band, of several CO isotopomers solvated in He clusters has been calculated. Reptation quantum Monte Carlo simulations are used in conjunction with an accurate He-CO potential energy surface, which quantitatively describes the rovibrational spectrum of the binary complex. Our simulations, when compared with number-selective infrared spectra taken for different isotopomers, help discriminate among the alternative assignments proposed for cluster sizes around 15 He atoms. The origin of the vibrational band has a red shift that is nearly linear with the cluster size within the first solvation shell and is almost constant up to the largest cluster studied, well beyond completion of the second solvation shell. A blue upturn at even larger sizes would be needed to attain the nanodroplet limit, as recently estimated from the isotopic dependence of the measured R(0) transitions.  相似文献   

19.
Practical aspects of Monte Carlo simulation of EPMA experiments are considered. Simulations are performed using the general-purpose Monte Carlo code system Penelope, which is briefly described. This code includes geometry tools and variance reduction methods that allow the practical simulation of x-ray spectra from samples with complex geometries in moderate computing times. The reliability of simple interaction models and approximations, which have been frequently used in EPMA studies, is analyzed by studying their effects on the simulated x-ray spectra.  相似文献   

20.
《Liquid crystals》1999,26(6):871-884
Director configurations in a nematic liquid crystal can be determined by minimizing its total elastic free energy, for given elastic constants and specific boundary conditions. In some cases, these configurations have been obtained by numerical procedures where the elastic free energy density plays the same role as the overall potential energy in a standard Metropolis Monte Carlo simulation. The interaction energies or potentials used in these studies are short ranged but, in general, not pairwise additive, unless the three elastic constants are set to a common value, thus reducing the potential to that in the well-known Lebwohl-Lasher lattice model. On the other hand, we can construct, in different ways, a lattice model with pairwise additive interactions, which approximately reproduces the elastic free energy density, where the parameters defining the pair potential are expressed as linear combinations of elastic constants. An anisotropic nematogenic pair interaction of this kind, originally proposed by Gruhn and Hess (T. Gruhn and S. Hess, Z. Naturforsch. A51, 1 (1996)), has recently been investigated by one of us, using a Monte Carlo simulation (S. Romano, Int. J. Mod. Phys. B 12, 2305 (1998)). Here we propose another approximate procedure for the mapping, and study the resulting pair potential model with the aid of Monte Carlo simulations. The behaviour of the nematic phases formed by the two models is compared together with the predictions of molecular field theory and the properties of the Lebwohl-Lasher model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号