首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
北京城区降雪中全氟化合物的污染水平   总被引:3,自引:0,他引:3  
通过检测北京城区降雪中16种全氟化合物的浓度,考察了北京地区大气中全氟化合物的污染状况.2009年11月10日,在城区采集了共计43个地点的雪样.降雪中全氟化合物的平均总浓度范围为0.47~7.94ng/L.其中全氟庚酸(PFHpA)、全氟辛酸(PFOA)、全氟壬酸(PFOS)、全氟癸酸(PFNA)的检出率均接近100%.PFOA是最主要的全氟化合物,平均浓度为0.85ng/L.通过分析数据,发现南城雪样中的全氟化合物总浓度要明显高于北城地区.  相似文献   

2.
高效液相色谱-串联质谱联用测定人血液中的全氟化合物   总被引:6,自引:0,他引:6  
采用HPLC-ESI-MS/MS联用技术,建立了分析血样中9种全氟化合物(PFCs)的方法.以13C4标记的PFOS (MPFOS)作为内标物.以C18反相柱为分析柱,甲醇、醋酸铵为梯度洗脱淋洗液,9种分析物包括全氟己烷磺酸(PFHxS)、全氟庚酸(PFHpA)、全氟辛酸 (PFOA)、全氟辛烷磺酸(PFOS)、全氟壬酸(PFNA)、全氟癸酸(PFDA)、全氟十一酸(PFUnDA)、全氟十二酸(PFDoDA)和全氟十四酸(PFTA),在15 min内即可达到良好的分离.在血样前处理中,采用MTBE液-液萃取和固相萃取相结合的方法,进一步净化样品以延长色谱柱寿命;比较了4种固相萃取小柱对全氟化合物的萃取性能,最终选定HLB柱(Waters).本研究还讨论了两种C18反相柱Acclaim 120(50 mm×4.6 mm, 3 μm)和Acclaim120 (250 mm×4.6 mm, 5 μm)(Dionex) 对PFCs的分析性能,在本实验条件下,两种色谱柱具有相似的分离性能及检出限,线性范围在0.1~50 μg/L之间 (r≥0.9957);对于血液样品该方法的检出限在0.03~0.8 μg/L之间.本研究将该方法成功地应用于血样实际样品中全氟化合物的测定,加标回收除PFTA较低外,其它化合物均在74.2%~118.1%之间.  相似文献   

3.
中空纤维膜萃取电喷雾电离质谱测定水中的全氟化合物   总被引:1,自引:0,他引:1  
采用中空纤维膜( HF)做固相微萃取( SPME)材料,与常压离子化质谱( AMS)联用,分析水中全氟庚酸(PFHpA)、全氟辛酸(PFOA)、全氟壬酸(PFNA)、全氟癸酸(PFDA)、全氟辛烷磺酸(PFOS)、全氟十一酸(PFuDA)和全氟十二酸(PFDoA)7种全氟化合物(Perfluorinated compounds, PFCs)。对萃取时间和萃取溶液pH值进行了优化,质谱在负模式下使用选择反应监测扫描( SRM),并使用同位素内标13 C4-PFOS和13 C4-PFOA进行定量分析。结果表明,本方法对7种PFCs均有良好的线性(R2>0.99);除了PFHpA外,其它6种PFCs化合物的检出限为0.8~2.7 ng/L,定量限为2.7~8.9 ng/L;其中5种PFCs的富集倍数超过200倍。实际水样中(自来水和珠江水)7种PFCs均未检出,PFCs加标浓度在40和400 ng/L时,自来水的回收率范围分别为88.5%~108.3%和94.2%~116.7%,珠江水的回收率范围分别为75.0%~102.6%和82.1%~97.6%。  相似文献   

4.
建立了近岸及河口海水中全氟辛基磺酸(PFOS)、全氟辛酸(PFOA)、全氟十一酸(PFUn A)、全氟十二酸(PFDo A)、全氟十三酸(PFTr DA)、全氟十四酸(PFTA)6种全氟化合物(PFCs)的超高效液相色谱-串联质谱(UHPLC-MS/MS)测定方法。使用C18固相萃取小柱对500 m L水样中的目标物进行富集后,用15 m L甲醇-乙酸乙酯混合淋洗液(4∶1)进行洗脱,浓缩,定容至1.0 m L后,用Kinetex XB-C18色谱柱以均含5.0mmol/L甲酸铵的甲醇-水为流动相梯度洗脱方式进行分离,电喷雾负离子模式(ESI-)电离,多重反应监测模式(MRM)以及内标法对6种PFCs进行定性定量测定。优化了固相萃取、色谱分离及质谱测定条件,考察了海水盐度对方法回收率的影响。在优化实验条件下,方法在2.0,5.0,10.0 ng/L加标水平下,实际海水样品的回收率为80.1%~117.4%,在2.0 ng/L加标水平的相对标准偏差(RSD,n=7)为8.2%~12.1%。6种PFCs的线性范围为0.5~50.0μg/L,相关系数大于0.999 0;方法的定量下限(LOQ,S/N=10)为0.5~1.5 ng/L。该方法具有样品前处理简单、分析速度快、选择性好的特点,适用于近岸及河口海水中全氟化合物的快速测定。  相似文献   

5.
样品经甲醇索式提取180 min及复合式弱阴离子交换固相萃取柱富集,用氨水-甲醇(1+99)溶液从柱上洗脱PFOS和PFOA使净化。洗脱液在45℃氮气吹干,残渣用流动相乙腈-5 mmol.L-1乙酸胺(42+58)混合溶液溶解定容至5 mL,取10μL注入超高效液相色谱仪。以不同体积比的乙腈与5 mmol.L-1乙酸铵的混合溶液为流动相作梯度淋洗,经C18色谱柱(100 mm×2.1 mm,5μm)分离。采用电喷雾负离子源及多反应监测模式测定。PFOS和PFOA的质量浓度均在40.0μg.L-1以内呈线性关系,检出限(3S/N)均为1μg.L-1。在3个标准加入水平下进行了回收率和精密度试验,PFOS和PFOA的加标回收率分别在90.0%~99.4%和91.6%~104.0%之间,相对标准偏差(n=6)均不大于13%。  相似文献   

6.
建立了固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)同时测定水中全氟烷基羧酸(PFCAs)、全氟烷基磺酸(PFSAs)、全氟烷基膦酸(PFPAs)、全氟烷基次膦酸(PFPis)和多氟烷基膦酸二酯(di PAPs)等23种全氟及多氟化合物的分析方法。固相萃取柱WAX柱依次用6 m L甲醇(含1%(V/V)NH4OH)、12mL甲醇和12mL超纯水活化,上样后,用6mL乙腈(含0.5%(V/V)NH4OH)、6mL甲醇(含1%(V/V)NH4OH)和6mL乙腈(含1%(V/V)NH4OH)洗脱。样品萃取液分为3份,一份用于分析PFCAs和PFSAs,溶液组成为等体积萃取液与超纯水;一份用于分析PFPAs,溶液组成为等体积萃取液与25 mmol/L四丁基硫酸氢铵;另一份用于分析PFPis和di PAPs,溶液组成为甲醇。结果表明,水中23种全氟及多氟化合物平均加标回收率为55%~125%,相对标准偏差为0.3%~15.0%,方法检出限和定量限分别为0.003~0.215 ng/L和0.010~0.714 ng/L。本方法简便、灵敏度高、重现性好,适用于同时检测水中多类全氟及多氟化合物。  相似文献   

7.
建立了超声波辅助萃取-气相色谱-微电子捕获检测器测定纺织品中全氟辛酸(PFOA)及全氟辛磺酰基化合物(PFOS)的方法。通过单因子选择实验、正交实验等方法建立了纺织品中PFOA和PFOS的超声波萃取方法和PFOA的衍生反应条件。并采用加大流速和降低温度的方法,实现了3种PFOA和PFOS混合物的气相色谱分离及测试。方法的检测限为0.00591~0.02319μg/g;精密度为2.1%~9.7%;加标回收率为92.2%~101.9%。方法适用于纺织品中痕量PFOA和PFOS的监测分析。  相似文献   

8.
建立了高效液相色谱-串联质谱法(HPLC-MS/MS)对水体中7种全氟烷基酸(C4~C10)和全氟辛烷磺酸的分析方法。水样抽滤除去颗粒物杂质,加入回收率指示物,再使用WAX固相萃取柱富集和净化,提取液浓缩后,使用HPLC/MS/MS分析检测。仪器分析过程中,由于液相系统无法避免含氟材料的使用,引入了较高的全氟辛酸(PFOA)污染。本研究使用杂质延迟法实现了液相系统中PFOA和样品中PFOA的分离。在系统干扰去除后,水体中PFOA的方法检出限降低为0.8 ng/L(取样量500 mL),低定量浓度为3.2 ng/L;其它目标物的方法检出限为0.2~1.2 ng/L,低定量浓度为0.8~4.8 ng/L。本方法具有良好的重现性,6次平行样品测定中各检出化合物的相对标准偏差(RSD)均小于16%,6次基体加标实验中各目标物的回收率为87%~129%,RSD<15%。杂质延迟法有效的去除了系统干扰,降低了方法检出限,提高了方法精密度。  相似文献   

9.
全氟羧酸盐海洋微表层富集与影响因素分析   总被引:3,自引:0,他引:3  
通过环境调查和表面张力测定实验,观察了全氟辛酸盐(PFOA)和全氟寅酸盐(PFNA)在海洋微表层中的富集现象,探讨了污染物浓度、温度、盐度等热力学因素对PFOA海水表面富集的影响趋势.利用钢丝网法采集的黄海北部开阔海域微表层中(厚约200μm),PFOA和PFNA的浓度分别为1.92~17.66ng/L和0.40~9.30ng/L,几何均值为4-27和1.38ng/L;微表层富集系数的几何均值为2.5(1.0~17)和8.2(2.1-42).微表层中PFNA与PFOA浓度比值几何均值为0.33,显著不同于次表层海水中的组成比例(0.10).海洋表层水温度和盐度是影响全氟表面活性剂微表层富集状态的主要热力学因素.温度增高时,微表层富集系数随之降低;盐度增加时,富集系数随之增加.  相似文献   

10.
建立了液相色谱-串联质谱法快速测定电子电气产品中全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的分析方法。采用加速溶剂萃取提取样品中PFOA和PFOS,二氯甲烷作溶剂,外标法定量,LC-MS/MS分析时间1 m in。电子电气产品中PFOS不同加标质量分数(0.25,0.75和1.25 mg/kg)的平均回收率分别为:91.6%、92.8%和94.7%;PFOA不同加标质量分数(0.50,1.25和2.25 mg/kg)的平均回收率分别为:90.1%、91.5%和93.4%;PFOS和PFOA测定的相对标准偏差分别为2.8%~3.3%和4.2%~4.9%。测定了金属框架涂层和氟聚合物材料中PFOS和PFOA的含量,PFOS含量分别为16μg/m2和0.89%,PFOA未检出  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号