首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modular approach has been followed for the synthesis of a series of fullerene–ionic‐liquid (IL) hybrids in which the number of IL moieties (two or twelve), anion, and cation have been varied. The combination of C60 and IL give rise to new unique properties in the conjugates such as solubility in water, which was higher than 800 mg mL?1 in several cases. In addition, one of the C60–IL hybrids has been employed for the immobilization of palladium nanoparticles through ion exchange followed by reduction with sodium borohydride. Surprisingly, during the reduction several carbon nanostructures were formed that comprised nano‐onions and nanocages with few‐layer graphene sidewalls, which have been characterized by means of thermogravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDAX), and high‐resolution transmission electron microscopy (HRTEM). Finally, the material thus obtained was successfully applied as catalyst in Suzuki and Mizoroki–Heck reactions in a concentration of just 0.2 mol %. In the former process it was recyclable for five runs with no loss in activity.  相似文献   

2.
Copper nanostructures were produced as an effective and regioselective catalyst for the synthesis of 1,2,3‐triazoles from a wide range of raw materials, such as sodium azide, epoxides and terminal alkynes, in water via a one‐pot three‐component click reaction. The new heterogeneous catalyst was prepared by a simple ball mill reduction of CuO with NaBH4 using a ball‐to‐powder weight ratio of 50:1 under air atmosphere at room temperature. The catalyst was fully characterized using scanning electron microscopy, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. The copper nanostructures catalysed both ring opening and triazole cyclization steps. Products were obtained in high yields and short reaction times. The reactions were performed at ambient temperature in water as a green solvent. The Cu/Cu2O nanostructures revealed high reusability and high stability via a simple recycling process.  相似文献   

3.
Pt alloy nanostructures show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. Herein, three‐dimensional (3D) Pt‐Pd‐Co trimetallic network nanostructures (TNNs) with a high degree of alloying are synthesized through a room temperature wet chemical synthetic method by using K2PtCl4/K3Co(CN)6–K2PdCl4/K3Co(CN)6 mixed cyanogels as the reaction precursor in the absence of surfactants and templates. The size, morphology, and surface composition of the Pt‐Pd‐Co TNNs are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), energy dispersive spectroscopy (EDS), EDS mapping, X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). The 3D backbone structure, solid nature, and trimetallic properties of the mixed cyanogels are responsible for the 3D structure and high degree of alloying of the as‐prepared products. Compared with commercially available Pt black, the Pt‐Pd‐Co TNNs exhibit superior electrocatalytic activity and stability towards the ORR, which is ascribed to their unique 3D structure, low hydroxyl surface coverage and alloy properties.  相似文献   

4.
Cube‐shaped CuInS2 nanoparticles were successfully prepared through a simple low‐temperature solution route. Mercaptoacetic acid was used as capping agent. The product was characterized by means of X‐ray diffraction (XRD), energy dispersive analysis of X‐rays (EDAX), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The CuInS2 nanocubes obtained were of a chalcopyrite structure. The EDAX analysis shows that as‐synthesized CuInS2 nanocubes were slightly Cu‐rich and nearly stoichiometric.  相似文献   

5.
Stable water dispersion of Fe3O4 magnetic nanoparticles (NPs) were successfully synthesized by using 3‐glycidoxypropyltrimethoxysilane (GPTMS) and Mg‐phyllo (organo) silicate known as aminoclay (AC) containing pendant amino groups with the approximate composition (R8Si8Mg6O16(OH)4, R = CH2CH2CH2NH2). The Fe3O4‐GPTMS magnetic NPs with an epoxy functional group are suitable for forming a covalent bond with the amine group of aminoclay in an epoxy ring opening reaction. Appropriate Fe3O4‐GPTMS‐aminoclay (FG‐AC) magnetic composite are promising carriers for the targeting and delivery of platinum‐based anticancer drugs. Analysis of the cytotoxicity of the nanostructures on a K562 leukemia cell line using a colorimetery assay shows that both the FG‐AC and cis‐platin/FG‐AC magnetic composite were biocompatible. The nanostructures characterizations were investigated by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and energy dispersive analysis of X‐ray techniques. Magnetic measurement revealed that the saturated magnetization of the FG‐AC nanocomposite reached 7.6 emu/g and showed the characteristics of magnetism.  相似文献   

6.
A novel Se/C nanocomposite with core‐shell structures has been prepared through a facile one‐pot microwave‐induced hydrothermal process. The new material consists of a trigonal‐Se (t‐Se) core and an amorphous‐C (a‐C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. These products were characterized by transmission electron microscopy (TEM), powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), energy‐dispersive X‐ray (EDX) spectroscopy, and X‐ray photoelectron spectroscopy (XPS).  相似文献   

7.
A high‐efficiency nanoelectrocatalyst based on high‐density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au‐Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy are employed to characterize the obtained Au‐Pt/SiO2. It was found that each hybrid nanosphere is composed of high‐density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the Au‐Pt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.  相似文献   

8.
We report a simple and template‐free strategy for the synthesis of hollow and yolk‐shell iron oxide (FeOx) nanostructures sandwiched between few‐layer graphene (FLG) sheets. The morphology and microstructure of this material are characterized in detail by X‐ray diffraction, X‐ray absorption near‐edge structure, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Its properties are evaluated as negative electrode material for Li‐ion batteries and compared with those of solid FeOx/FLG and two commercial iron oxides. In all cases, the content of carbon in the electrode has a great influence on the performance. The use of pristine FLG improves the capacity retention and further enhancement is achieved with the hollow structure. For a low carbon loading of 18 wt. %, the presence of metallic iron in the hollow and yolk‐shell FeOx/FLG composite significantly enhances the capacity retention, albeit with a relatively lower initial reversible capacity, retaining above 97 % after 120 cycles at 1000 mA g?1 in the voltage range of 0.1–3.0 V.  相似文献   

9.
A Pd2Co precursor, [Et3NH]2[CoPd2(μ‐4‐I‐3,5‐Me2pz)4Cl4], was used to synthesize palladium–cobalt nanorings and nanoparticles on highly ordered pyrolytic graphite (HOPG) surface. Different types of nanostructures were formed on HOPG surfaces and were controlled by relative humidity (%RH). These structures included Pd2Co nanorings on HOPG surface by self‐assembly with humidity control. The %RH affects the size and dispersion of the self‐formation of the Pd2Co rings on HOPG surfaces. The modified HOPG surface with Pd2Co precursor at 80%RH has rings of similar sizes, while modification at 76%RH gives well‐formed rings and 70%RH with smaller diameters. After thermal reduction of the Pd2Co precursor on HOPG, bimetallic nanostructures were formed. X‐ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy with energy‐dispersive X‐ray fluorescence spectroscopy techniques were employed to study the composition and morphology of the nanostructures formations on the HOPG surface. Electrochemical characterization of the Pd2Co nanostructures was performed. Moreover, the bimetallic catalyst has electrocatalytic activity for the oxygen reduction reaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Three‐dimensional flower‐like α‐Fe2O3 nanostructures have been successfully synthesized by a simple surfactant‐free environmental friendly solvolthermal process. The as‐prepared products were investigated by X‐ray powder diffraction, transmission electron microscopy, and field emission scanning electron microscopy. By adjusting the synthetic parameters, the shape of the α‐Fe2O3 nanostructures can be controlled. The three‐dimensional flower‐like α‐Fe2O3 nanostructures were found to be highly active as catalysts for phenol alkylation. The effects of various parameters, such as reaction temperature, reaction time and the amount of catalyst, were studied. The catalyst was stable and could be reused three times in normal atmosphere without suffering appreciable loss in catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This report focuses on the synthesis of gold‐nickel bimetallic nanostructures. In the presence of amine as the capping agent, thermal decomposition of organometallic precursors CH3AuPPh3 and Ni(PPh3)4 in o‐xylene offered AuNi nanorods. Several preparative parameters possible influencing the morphology of the structure were carefully studied by varying the reaction conditions with respect to the standard procedure. The morphology and composition of the AuNi nanorods were principally characterized by transmission electron microscopy, energy dispersive spectroscopy, and powder X‐ray diffraction. The distribution of the Au as well as Ni atoms was examined by EDS mapping analysis. The mechanism of the formation of the AuNi bimetallic nanorods is proposed on the base of observation of the morphologies of nanostructures at various reaction time intervals.  相似文献   

12.
For the first time, iron oxide on carbon aerogel, amine functionalized carbon nanotube, black carbon and carboxylic acid functionalized carbon nanotube in the presence of H2O2 was reported as an efficient and stable catalyst for the selective oxidation of sulfides and alcohols. The catalysts were characterized by scanning electron microscopy, energy‐dispersive spectroscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy and atomic absorption spectroscopy. In the next step, catalytic reactivity toward sulfide to sulfoxide and alcohol to aldehyde/ketone oxidation in the presence of H2O2 was studied and discussed.  相似文献   

13.
Magnetic core–shell titanium dioxide nanoparticles (Fe3O4@SiO2@TiO2) were applied for the efficient preparation of 1,2,4,5‐tetrasubstituted imidazole derivatives by the one‐pot multi‐component condensation of benzil with aldehydes, primary amines and ammonium acetate under solvent‐free conditions. The catalyst was synthesized and studied using several techniques including X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A novel magnetic ferrocene‐labelled ionic liquid based on triazolium, [Fe3O4@SiO2@Triazol‐Fc][HCO3], has been synthesized and has been successfully introduced as a recyclable heterogeneous nanocatalyst. The catalytic activity of the novel magnetic nanoparticles was evaluated in the one‐pot three‐component synthesis of a wide variety of Betti bases. A simple, facile and highly efficient green method has been developed for the synthesis of kojic acid‐containing Betti base derivatives at room temperature. Additionally, this new protocol has notable advantages such as short reaction times, green reaction conditions, high yields and simple workup and purification steps. Also, the novel nanocatalyst could be easily recovered using an external magnetic field and reused for six consecutive reaction cycles without significant loss of activity. The newly synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements.  相似文献   

15.
Polyaniline/SiO2 nanocomposite material has been synthesized by using chemical oxidative method. Prepared catalytic material was characterized by means of transmission electron microscopy (TEM), thermal analysis (TG‐DTA), X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT‐IR). Solvent stability for the catalyst has been screened using UV‐Visible spectroscopy. Polyaniline/SiO2 catalyzed route has found to be an efficient and rapid protocol for the synthesis of quinoxaline derivatives by cyclocondensation of 1,2‐diketones and o‐phenylenediamines at room temperature. This protocol has several advantages such as high yield, good thermal stability, simple work up procedure, non‐toxic, clean, and easy recovery and reusability of the catalytic system.  相似文献   

16.
Engineering appropriate shape and size of three‐dimensional inorganic nanostructures materials is of one the main critical problems in pursuing high‐performance electrode materials. Herein, we fabricate a metal‐organic framework derived cobalt oxide (Co3O4) are grown on copper oxide nanowire (CuO NWs) supported on the surface of 3D copper foam substrate. The highly aligned CuO NWs were prepared by using electrochemical anodization of copper foam in ambient temperature and followed by MOF Co3O4 was grown via a simple in situ solution deposition then consequent calcination process. The obtained binder‐free 3D CuO NWs@Co3O4 nanostructures were further characterized by using X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy, and transmission electron microscopy. Furthermore, electrochemical sensing of glucose was studied by using Cyclic Voltammetry, and chronoamperometry techniques. Interestingly, 3D CuO NWs@Co3O4 electrode exhibits excellent performance for the oxidation of glucose compared with individual entities. The proposed sensor shows wide linear ranges from 0.5 μM to 0.1 mM with the sensitivity of 6082 μA/μM and the lowest detection limit (LOD) of 0.23 μM was observed with the signal to noise ratio, (S/N) of 3. The superior catalytic oxidation of glucose mainly is endorsed by the excellent electrical conductivity and synergistic effect of the Co3O4 and CuO NWs.  相似文献   

17.
《中国化学会会志》2018,65(4):490-496
A simple and efficient method is presented for the large‐scale synthesis of ultra‐small, wired‐shaped GdPO4:Tb nanostructured phosphor material with an average diameter of 2–5 nm and typical average length of 100 nm. X‐ray diffraction (X RD), transmission electron microscopy (TEM), energy dispersive X‐ray (EDX) analysis, as well as FTIR, UV–vis, emission, and excitation spectral techniques were employed to examine the crystal phase, purity, morphology, surface chemistry, and optical and photoluminescence properties of the as‐prepared nanoproducts. The TEM image clearly revealed the single‐phase, highly crystalline, narrow‐size‐distributed, ultra‐small, wire‐shaped nanostructures, which was confirmed from the XRD pattern. Optical absorption spectra in the ultraviolet region show high absorbance because of the high solubility and colloidal stability in aqueous solvents. Surface coating of an undoped LaPO4 shell remarkably enhanced the crystallinity and photoluminescence properties of the nanowires (NWs). Core/shell NWs represent high emission and excitation intensity regardless of the core NWs because of a decrease in multiphoton relaxation pathways. It could be a highly suitable nanomaterial for optical bioprobes, biodetectors, and so on.  相似文献   

18.
Catalytic diesel soot combustion was examined using a series of Mn2O3 catalysts with different morphologies, including plate, prism, hollow spheres and powders. The plate‐shaped Mn2O3 (Mn2O3‐plate) exhibited superior carbon soot combustion activity compared to the prism‐shaped, hollow‐structured and powdery Mn2O3 under both tight and loose contact modes at soot combustion temperatures (T50) of 327 °C and 457 °C, respectively. Comprehensive characterization studies using scanning electron microscopy, scanning transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, temperature‐programmed reduction and oxygen release measurements, revealed that the improved activity of Mn2O3‐plate was mainly attributed to the high oxygen release rate of surface‐adsorbed active oxygen species, which originated from oxygen vacancy sites introduced during the catalyst preparation, rather than specific surface‐exposed planes. The study provides new insights for the design and synthesis of efficient oxidation catalysts for carbon soot combustion as well as for other oxidation reactions of harmful hydrocarbon compounds.  相似文献   

19.
Cu3Sn alloy nanocrystals are synthesized by sequential reduction of Cu and Sn precursors through a gradual increase of the reaction temperature. By transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), UV/Vis spectroscopy, and X‐ray diffraction (XRD) analyses, the alloy formation mechanism of Cu3Sn nanocrystals has been studied. The incremental increase of the reaction temperature sequentially induces the reduction of Sn, the diffusion of Sn into the preformed Cu nanocrystals, resulting in the intermediate phase of Cu–Sn alloy nanocrystals, and then the formation of Cu3Sn alloy nanocrystals. We anticipate that the synthesis of Cu3Sn alloy nanocrystals encourages studies toward the synthesis of various alloy nanomaterials.  相似文献   

20.
The Fe3O4 magnetic particles were modified with 1,10‐phenanthroline‐5,6‐diol (Phen) and the related Mn complex (Fe3O4@Phen@Mn) synthesized as a heterogeneous catalyst to be used for the one‐pot three‐component synthesis of various tetrazoles. The catalysts were characterized by several methods, such as the elemental analysis, FT‐IR, X‐ray powder diffraction, dispersive X‐ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, thermogravimetric‐differential thermal analysis, vibrating sample magnetometer and X‐ray photoelectron spectroscopy. In addition, the antioxidant and antibacterial activities of the catalyst and its Phen ligand were in vitro screened with 2,2‐diphenyl‐1‐picrylhydrazyl by free radical scavenging methods. Results showed that the synthesized compounds possess strong antioxidant activity (IC50; 0.172  ±  0.005 mg ml?1) as well as a good antibacterial potential in comparison to standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号