首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the development of a Pd‐catalyzed decarboxylative asymmetric allylic alkylation of α‐nitro allyl esters to afford acyclic tetrasubstituted nitroalkanes. Optimization of the reaction parameters revealed unique ligand and solvent combinations crucial for achieving chemo‐ and enantioselective C‐alkylation of electronically challenging benzylic nitronates and sterically encumbered 2‐allyl esters. Substrates were efficiently accessed in a combinatorial fashion by a cross‐Claisen/ α‐arylation sequence. The method provides functional group orthogonality that complements nucleophilic imine allylation strategies for α‐tertiary amine synthesis.  相似文献   

2.
Highly enantioselective rhodium‐catalyzed addition of arylboroxines to N‐unprotected ketimines is realized for the first time by employing chiral BIBOP‐type ligands with a Rh loading as low as 1 mol %. A range of chiral α‐trifluoromethyl‐α,α‐diaryl α‐tertiary amines or 3‐amino‐3‐aryloxindoles were formed with excellent ee values and yields by employing either WingPhos or PFBO‐BIBOP as the ligand. The method has enabled an efficient enantioselective synthesis of cipargamin.  相似文献   

3.
4.
A novel heteroannulation reaction between α‐amino imides and in situ generated arynes has been developed for the synthesis of 2,2‐disubstituted indolin‐3‐ones. An enantioselective total synthesis of the marine alkaloid (+)‐hinckdentine A was subsequently accomplished using this reaction as a key step. A catalytic enantioselective Michael addition of an α‐aryl‐α‐isocyanoacetate to phenyl vinyl selenone was employed for the construction of the enantioenriched α‐quaternary α‐amino ester.  相似文献   

5.
The first catalytic asymmetric construction of 3,3′‐bisindole skeletons bearing both axial and central chirality has been established by organocatalytic asymmetric addition reactions of 2‐substituted 3,3′‐bisindoles with 3‐indolylmethanols (up to 98 % yield, all >95:5 d.r., >99 % ee). This reaction also represents the first highly enantioselective construction of axially chiral 3,3′‐bisindole skeletons, and utilizes the strategy of introducing a bulky group to the ortho‐position of prochiral 3,3′‐bisindoles. This reaction not only provides a good example for simultaneously controlling axial and central chirality in one operation, but also serves as a new strategy for catalytic enantioselective construction of axially chiral 3,3′‐bisindole backbones from prochiral substrates.  相似文献   

6.
The direct α‐vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ‐oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium‐catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α‐vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (−)‐aspewentins A, B, and C is demonstrated.  相似文献   

7.
A new, easy, and highly enantioselective method for the synthesis of quaternary α‐alkyl‐α‐amino acids based on organocatalysis is reported. The addition of oxazolones to 1,1‐bis(phenylsulfonyl)ethylene is efficiently catalyzed by simple chiral bases or thioureas. The reaction affords α,α‐disubstituted α‐amino acid derivatives with complete C4 regioselectivity and with excellent yields and enantioselectivities. This methodology is complementary to previously reported enantioselective approaches to quaternary α‐amino acids and allows the synthesis of α‐phenyl‐α‐alkyl‐α‐amino acids and α‐tert‐butyl‐α‐alkyl‐α‐amino acids. It has distinct advantages in terms of operational simplicity, enviromentally friendly conditions, and suitability for large‐scale reactions.  相似文献   

8.
A catalytic enantioselective method for the synthesis of 1,4‐keto‐alkenylboronate esters by a rhodium‐catalyzed conjugate addition pathway is disclosed. A variety of novel, bench‐stable alkenyl gem‐diboronate esters are synthesized. These easily accessible reagents react smoothly with a collection of cyclic α,β‐unsaturated ketones, generating a new C?C bond and stereocenter. Products are isolated in up to 99 % yield with greater than 20:1 E/Z and greater than 99:1 e.r. Mechanistic studies show the site‐selectivity of transmetalation and reactivity is ligand dependent. The utility of the approach is highlighted by gram‐scale synthesis of enantioenriched cyclic 1,4‐diketones, and stereoselective transformations of the products by hydrogenation, allylation, and isomerization.  相似文献   

9.
Axially chiral cyclohexylidene oxime ethers exhibit unique chirality because of the restricted rotation of C=N. The first catalytic enantioselective synthesis of novel axially chiral cyclohexylidene oximes has been developed by catalytic desymmetrization of 4‐substituted cyclohexanones with O‐arylhydroxylamines and is catalyzed by a chiral BINOL‐derived strontium phosphate with excellent yields and good enantioselectivities. In addition, chiral BINOL‐derived phosphoric acid catalyzed dynamic kinetic resolution of α‐substituted cyclohexanones has been performed and yields versatile intermediates in high yields and enantioselectivities.  相似文献   

10.
The one‐pot sequential coupling of benzylamines, boronic esters, and aryl iodides has been investigated. In the presence of an N‐activator, the boronate complex formed from an ortho‐lithiated benzylamine and a boronic ester undergoes stereospecific 1,2‐metalate rearrangement/anti‐SN2′ elimination to form a dearomatized tertiary boronic ester. Treatment with an aryl iodide under palladium catalysis leads to rearomatizing γ‐selective allylic Suzuki–Miyaura cross‐coupling to generate 1,1‐diarylalkanes. When enantioenriched α‐substituted benzylamines are employed, the corresponding 1,1‐diarylalkanes are formed with high stereospecificity.  相似文献   

11.
A highly E‐selective and enantioselective conjugate addition of 2‐benzyloxythiazol‐5(4H)‐ones to β‐substituted alkynyl N‐acyl pyrazoles is achieved under the catalysis of a P‐spiro chiral iminophosphorane. Simultaneous control of the newly generated central chirality and olefin geometry is possible with a wide array of the alkynyl Michael acceptors possessing different aromatic and aliphatic β‐substituents, as well as the various α‐amino acid‐derived thiazolone nucleophiles. This protocol provides access to structurally diverse, optically active α‐amino acids bearing a geometrically defined trisubstituted olefinic component at the α‐position.  相似文献   

12.
An unprecedented enantioselective allylic alkylation of readily available aldimine esters has been developed, and is catalyzed by a synergistic Cu/Pd catalyst system. This strategy provides facile access to nonproteinogenic α,α‐disubstituted α‐amino acids in high yield with excellent enantioselectivity. The more challenging double allylic alkylation of glycinate‐derived imine esters was also realized. Furthermore, this methodology was applied for the construction of the key intermediate of PLG peptidomimetics.  相似文献   

13.
The first phosphoric acid catalyzed direct arylation of 2‐naphthylamines with iminoquinones for the atroposelective synthesis of axially chiral biaryl amino alcohols has been developed. This reaction constitutes a highly functional‐group‐tolerant route for the rapid construction of enantioenriched axially chiral biaryl amino alcohols, and is a rare example of 2‐naphthylamines acting as nucleophiles in an organocatalytic enantioselective transformation. Furthermore, the products, which feature various halogen atoms, provide access to structurally diverse axially chiral amino alcohols through further transformations.  相似文献   

14.
Suitably substituted enantioenriched 4‐aryl‐1,4‐dihydro‐pyridines prepared by an organocatalytic enantioselective Michael addition were oxidized with MnO2 into axially chiral 4‐arylpyridines with central‐to‐axial chirality conversion. Moderate to complete percentages (cp) were observed, and a model for the conversion of chirality is discussed.  相似文献   

15.
A concise enantioselective total synthesis of (2S,3′R,7′Z)-N-(3′-hydroxy-7′-tetradecenoyl)-homoserine lactone is described. Key feature of this protocol is a catalytic asymmetric hydrogenation and a prophenol-zinc-catalyzed diazo addition to imine reaction as genesis of chirality. Moreover, flexibility is built in the synthesis to generate enantioenriched analogs using catalytic amount of enantioenriched C2-symmetric ligands.  相似文献   

16.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

17.
Enantioselective electrophilic aromatic nitration methodology is needed to advance chirality‐assisted synthesis (CAS). Reported here is an enantioselective aromatic nitration strategy operating with chiral diester auxiliaries, and it provides an enantioselective synthesis of a C3v‐symmetric tribenzotriquinacene (TBTQ). These axially‐chiral structures are much sought‐after building blocks for CAS, but they were not accessible prior to this work in enantioenriched form without resolution of enantiomers. This nitration strategy controls the stereochemistry of threefold nitration reactions from above the aromatic rings with chiral diester arms. Dicarbonyl‐to‐arenium chelation rigidifies the reaction systems, so that remote stereocenters position the ester‐directing groups selectively over specific atoms of the TBTQ framework. Closely guided by computational design, a more selective through‐space directing arm was first predicted with density functional theory (DFT), and then confirmed in the laboratory, to outperform the initial structural design. This enantio‐ and regioselective TBTQ synthesis opens a new pathway to access building blocks for CAS.  相似文献   

18.
α‐Amino acids are essential resources for human life and are highly useful as building blocks for organic synthesis. The core framework of an α‐amino acid can be divided into three basic components: an aldehyde, an amine, and carbon dioxide (CO2). We report herein that a one‐step synthesis of α‐amino acids has been successfully achieved from these three basic and inexpensive chemicals with a single operation, in which the mixture of an aldehyde, a sulfonamide, and gaseous CO2 was heated at 100 °C in the presence of Bu3Sn‐SnBu3 and CsF. In this one‐pot sequential protocol, two important intermediates (imine and α‐amino stannane) are involved and the stannyl anion generated in situ plays a crucial role, particularly for the efficient stannylation of the imine in the presence of proton sources and for promoting retrostannylation of the undesired α‐alkoxy stannane owing to its high stability and tolerance of the presence of proton sources. This methodology enabled the synthesis of a wide range of racemic arylglycine derivatives in high yields.  相似文献   

19.
We report herein the first examples of catalytic enantioselective synthesis of axially chiral 3‐arylpyrroles. Reaction of α‐isocyanoacetates with β‐aryl‐α,β‐alkynic ketones in the presence of silver oxide and a phosphine ligand derived from Cinchona alkaloid occurred chemoselectively to afford enantioenriched 3‐arylpyrroles in high yields with excellent enantiomeric excesses. The pyrrole ring was constructed de novo in this process.  相似文献   

20.
The development and further evolution of the first catalytic asymmetric conjugate additions of azlactones as activated amino acid derivatives to enones is described. Whereas the first‐generation approach started from isolated azlactones, in the second‐generation approach the azlactones could be generated in situ starting from racemic N‐benzoylated amino acids. The third evolution stage could make use of racemic unprotected α‐amino acids to directly form highly enantioenriched and diastereomerically pure masked quaternary amino acid products bearing an additional tertiary stereocenter. The step‐economic transformations were accomplished by cooperative activation by using a robust planar chiral bis‐Pd catalyst, a Brønsted acid (HOAc or BzOH; Ac=acetyl, Bz=benzoyl), and a Brønsted base (NaOAc). In particular the second‐ and third‐generation approaches provide a rapid and divergent access to biologically interesting unnatural quaternary amino acid derivatives from inexpensive bulk chemicals. In that way highly enantioenriched acyclic α‐amino acids, α‐alkyl proline, and α‐alkyl pyroglutamic acid derivatives could be prepared in diastereomerically pure form. In addition, a unique way is presented to prepare diastereomerically pure bicyclic dipeptides in just two steps from unprotected tertiary α‐amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号