首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
For spectral imaging of chemical distributions using X‐ray absorption near‐edge structure (XANES) spectra, a modified double‐crystal monochromator, a focusing plane mirrors system and a newly developed fluorescence‐type X‐ray beam‐position monitoring and feedback system have been implemented. This major hardware upgrade provides a sufficiently stable X‐ray source during energy scanning of more than hundreds of eV for acquisition of reliable XANES spectra in two‐dimensional and three‐dimensional images. In recent pilot studies discussed in this paper, heavy‐metal uptake by plant roots in vivo and iron's phase distribution in the lithium–iron–phosphate cathode of a lithium‐ion battery have been imaged. Also, the spatial resolution of computed tomography has been improved from 70 nm to 55 nm by means of run‐out correction and application of a reconstruction algorithm.  相似文献   

2.
The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano‐ and micrometer‐scale factors at the origin of macroscopic behavior. While different electron‐ and X‐ray‐based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X‐ray imaging set‐up is proposed, combining full‐field transmission X‐ray microscopy (TXM) with X‐ray absorption near‐edge structure (XANES) spectroscopy to follow two‐dimensional and three‐dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.  相似文献   

3.
The Imaging and Medical beamline at the Australian Synchrotron achieved `first light' in December 2008. Here, the first experiments performed on the beamline are reported, which involved both X‐ray imaging and tomography studies for a range of samples. The use of a plastic‐edge phantom for quantitative measurements of contrast and resolution proved to be very instructive and helped to confirm certain parameter values such as the effective horizontal source size, detector resolution and average X‐ray energy for the polychromatic beam.  相似文献   

4.
The Compact Light Source is a miniature synchrotron producing X‐rays at the interaction point of a counter‐propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X‐rays can be exploited in high‐sensitivity differential phase‐contrast imaging with a grating‐based interferometer. Here, the first multimodal X‐ray imaging experiments at the Compact Light Source at a clinically compatible X‐ray energy of 21 keV are reported. Dose‐compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark‐field imaging over conventional attenuation‐based projections.  相似文献   

5.
A scanning transmission X‐ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X‐rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X‐ray microscopy (STXM) setup is from ~150 to ~1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction‐limited space resolution, ~30 nm, is achieved in the photon energy range up to ~850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X‐ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ~50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.  相似文献   

6.
A hard X‐ray scanning microscope installed at the Hard X‐ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature of a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.  相似文献   

7.
An end‐station for X‐ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end‐station is dedicated to the study of shallow core electronic excitations using non‐resonant inelastic X‐ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X‐ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end‐station provides an unprecedented instrument for X‐ray Raman scattering, which is a spectroscopic tool of great interest for the study of low‐energy X‐ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.  相似文献   

8.
Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low‐dose high‐sensitivity three‐dimensional mammographic phase‐contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X‐ray energy, source size, detector resolution, sample‐to‐detector distance, scanning and data processing strategies in the case of propagation‐based phase‐contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast‐tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation‐based phase contrast and demonstrated significant improvement of the quality of phase‐contrast CT imaging compared with conventional (absorption‐based) CT, at medically acceptable radiation doses.  相似文献   

9.
A distributed fast‐acquisition system for synchronized multi‐technique experiments is presented, in which the collection of metadata and the asynchronous merging of large data volumes from multiple detectors are managed as part of the data collection process. This fast continuous scanning scheme, named FLYSCAN, enables measurement of microscopy data on a timescale of milliseconds per pixel. Proof‐of‐principle multi‐technique experiments, namely scanning X‐ray fluorescence spectrometry combined with absorption, differential phase contrast and dark‐field imaging, have been performed on biological and geological samples.  相似文献   

10.
X‐ray microscopy is capable of imaging particles in the nanometer size range directly with sub‐micrometer spatial resolution and can be combined with high spectral resolution for spectromicroscopy studies. Two types of microscopes are common in X‐ray microscopy: the transmission X‐ray microscope and the scanning transmission X‐ray microscope; their set‐ups are explained in this paper. While the former takes high‐resolution images from an object with exposure times of seconds or faster, the latter is very well suited as an analytical instrument for spectromicroscopy. The morphology of clusters or particles from soil and sediment samples has been visualized using a transmission X‐ray microscope. Images are shown from a cryo‐tomography experiment based on X‐ray microscopy images to obtain information about the three‐dimensional structure of clusters of humic substances. The analysis of a stack of images taken with a scanning transmission X‐ray microscope to combine morphology and chemistry within a soil sample is shown. X‐ray fluorescence is a method ideally applicable to the study of elemental distributions and binding states of elements even on a trace level using X‐ray energies above 1 keV.  相似文献   

11.
Substructure and phase composition of silicon suboxide films containing silicon nanocrystals and implanted with carbon have been investigated by means of the X‐ray absorption near‐edge structure technique with the use of synchrotron radiation. It is shown that formation of silicon nanocrystals in the films' depth (more than 60 nm) and their following transformation into silicon carbide nanocrystals leads to abnormal behaviour of the X‐ray absorption spectra in the elementary silicon absorption‐edge energy region (100–104 eV) or in the silicon oxide absorption‐edge energy region (104–110 eV). This abnormal behaviour is connected to X‐ray elastic backscattering on silicon or silicon carbide nanocrystals located in the silicon oxide films depth.  相似文献   

12.
In recent years, increasing attention has been devoted to X‐ray phase contrast imaging, since it can provide high‐contrast images by using phase variations. Among the different existing techniques, Zernike phase contrast microscopy is one of the most popular phase‐sensitive techniques for investigating the fine structure of the sample at high spatial resolution. In X‐ray Zernike phase contrast microscopy, the image contrast is indeed a mixture of absorption and phase contrast. Therefore, this technique just provides qualitative information on the object, which makes the interpretation of the image difficult. In this contribution, an approach is proposed for quantitative phase retrieval in X‐ray Zernike phase contrast microscopy. By shifting the phase of the direct light by π/2 and 3π/2, two images of the same object are measured successively. The phase information of the object can then be quantitatively retrieved by a proper combination of the measured images. Numerical experiments were carried out and the results confirmed the feasibility of the proposed method. It is expected that the proposed method will find widespread applications in biology, materials science and so on.  相似文献   

13.
A full‐field hard X‐ray imaging beamline (BL‐4) was designed, developed, installed and commissioned recently at the Indus‐2 synchrotron radiation source at RRCAT, Indore, India. The bending‐magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high‐resolution radiography, propagation‐ and analyzer‐based phase contrast imaging, real‐time imaging, absorption and phase contrast tomography etc. First experiments on propagation‐based phase contrast imaging and micro‐tomography are reported.  相似文献   

14.
The electron density resolution of synchrotron‐radiation phase‐contrast imaging (SR‐PCI) is 1000 times higher than that of conventional X‐ray absorption imaging in light elements, through which high‐resolution X‐ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR‐PCI can give better imaging contrast than conventional X‐ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in‐line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50–70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR‐PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross‐sectional imaging. In conclusion, SR‐PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X‐ray absorption imaging, which prompt the X‐ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.  相似文献   

15.
Phase‐contrast X‐ray imaging using a crystal X‐ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase‐contrast X‐ray system was used, fitted with a two‐crystal X‐ray interferometer at 35 keV X‐ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol‐fixed kidney could be visualized more clearly than that of formalin‐fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol‐fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7–3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol‐fixation technique enables the image contrast to be enhanced in phase‐contrast X‐ray imaging.  相似文献   

16.
Advances in resonant inelastic X‐ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3‐edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid‐angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3‐absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X‐ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27‐ID at the Advanced Photon Source. X‐rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X‐ray measurements, ray‐tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high‐resolution RIXS multi‐crystal analyzer system.  相似文献   

17.
The ESRF synchrotron beamline ID22, dedicated to hard X‐ray microanalysis and consisting of the combination of X‐ray fluorescence, X‐ray absorption spectroscopy, diffraction and 2D/3D X‐ray imaging techniques, is one of the most versatile instruments in hard X‐ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.  相似文献   

18.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

19.
The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage‐ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X‐ray spectrum (above ~10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi‐purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X‐ray absorption spectroscopy at energies above 18 keV and high‐resolution diffraction experiments. More recently, new setups and photon‐hungry experiments such as total X‐ray scattering, X‐ray diffraction under high pressures, resonant X‐ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.  相似文献   

20.
X‐ray microscopy is a commonly used method especially in material science application, where the large penetration depth of X‐rays is necessary for three‐dimensional structural studies of thick specimens with high‐Z elements. In this paper it is shown that full‐field X‐ray microscopy at 6.2 keV can be utilized for imaging of biological specimens with high resolution. A full‐field Zernike phase‐contrast microscope based on diffractive optics is used to study lipid droplet formation in hepatoma cells. It is shown that the contrast of the images is comparable with that of electron microscopy, and even better contrast at tender X‐ray energies between 2.5 keV and 4 keV is expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号