首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The coherent X‐ray scattering beamline at the 9C port of the upgraded Pohang Light Source (PLS‐II) at Pohang Accelerator Laboratory in Korea is introduced. This beamline provides X‐rays of 5–20 keV, and targets coherent X‐ray experiments such as coherent diffraction imaging and X‐ray photon correlation spectroscopy. The main parameters of the beamline are summarized, and some preliminary experimental results are described.  相似文献   

2.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

3.
Various upgrades have been completed at the XRD1 beamline at the Brazilian synchrotron light source (LNLS). The upgrades are comprehensive, with changes to both hardware and software, now allowing users of the beamline to conduct X‐ray powder diffraction experiments with faster data acquisition times and improved quality. The main beamline parameters and the results obtained for different standards are presented, showing the beamline ability of performing high‐quality experiments in transmission geometry. XRD1 operates in the 5.5–14 keV range and has a photon flux of 7.8 × 109 photons s?1 (with 100 mA) at 12 keV, which is one of the typical working energies. At 8 keV (the other typical working energy) the photon flux at the sample position is 3.4 × 1010 photons s?1 and the energy resolution ΔE/E = 3 × 10?4.  相似文献   

4.
The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X‐ray absorption and scattering experiments using soft X‐rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed‐included‐angle, variable‐line‐spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end‐stations, one for X‐ray magnetic circular dichroism and the other for resonant magnetic scattering. The commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.  相似文献   

5.
The hard X‐ray beamline BL8 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA is described. This beamline is dedicated to X‐ray studies in the spectral range from ~1 keV to ~25 keV photon energy. The monochromator as well as the other optical components of the beamline are optimized accordingly. The endstation comprises a six‐axis diffractometer that is capable of carrying heavy loads related to non‐ambient sample environments such as, for example, ultrahigh‐vacuum systems, high‐pressure cells or liquid‐helium cryostats. X‐ray absorption spectra from several reference compounds illustrate the performance. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments have been performed. The results show that high‐quality EXAFS data can be obtained in the quick‐scanning EXAFS mode within a few seconds of acquisition time, enabling time‐resolved in situ experiments using standard beamline equipment that is permanently available. The performance of the new beamline, especially in terms of the photon flux and energy resolution, is competitive with other insertion‐device beamlines worldwide, and several sophisticated experiments including surface‐sensitive EXAFS experiments are feasible.  相似文献   

6.
A bent‐crystal spectrometer based on the Rowland circle geometry has been installed and tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility to improve its performances. The energy resolution of the spectrometer allows different kinds of measurements to be performed, including X‐ray absorption spectroscopy, resonant inelastic X‐ray scattering and X‐ray Raman scattering experiments. The simplicity of the experimental device makes it easily implemented on a classical X‐ray absorption beamline. This improvement in the fluorescence detection is of particular importance when the probed element is embedded in a complex and/or heavy matrix, for example in environmental sciences.  相似文献   

7.
A dedicated in‐vacuum X‐ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four‐crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small‐angle X‐ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing‐incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.  相似文献   

8.
A multiple‐analyser‐crystal spectrometer for non‐resonant inelastic X‐ray scattering spectroscopy installed at beamline ID16 of the European Synchrotron Radiation Facility is presented. Nine analyser crystals with bending radii R = 1 m measure spectra for five different momentum transfer values simultaneously. Using a two‐dimensional detector, the spectra given by all analysers can be treated individually. The spectrometer is based on a Rowland circle design with fixed Bragg angles of about 88°. The energy resolution can be chosen between 30–2000 meV with typical incident‐photon energies of 6–13 keV. The spectrometer is optimized for studies of valence and core electron excitations resolving both energy and momentum transfer.  相似文献   

9.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

10.
The ESRF synchrotron beamline ID22, dedicated to hard X‐ray microanalysis and consisting of the combination of X‐ray fluorescence, X‐ray absorption spectroscopy, diffraction and 2D/3D X‐ray imaging techniques, is one of the most versatile instruments in hard X‐ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.  相似文献   

11.
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented.  相似文献   

12.
13.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   

14.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

15.
Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state‐of‐the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron–hole pair creation energy were determined, the latter with an unprecedented relative uncertainty of 1%. The linearity and X‐ray scattering properties of the device are also described.  相似文献   

16.
The multi‐purpose experimental endstation of beamline BL9 at the Dortmund Electron Accelerator (DELTA) is dedicated to diffraction experiments in grazing‐incidence geometry, reflectivity and powder diffraction measurements. Moreover, fluorescence analysis and inelastic X‐ray scattering experiments can be performed. Recently, a new set‐up for small‐angle and wide‐angle X‐ray scattering utilizing detection by means of an image‐plate scanner was installed and is described in detail here. First small‐angle X‐ray scattering experiments on aqueous solutions of lysozyme with different cosolvents and of staphylococcal nuclease are discussed. The application of the set‐up for texture analysis is emphasized and a study of the crystallographic texture of natural bio‐nanocomposites, using lobster and crab cuticles as model materials, is presented.  相似文献   

17.
A scanning transmission X‐ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X‐rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X‐ray microscopy (STXM) setup is from ~150 to ~1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction‐limited space resolution, ~30 nm, is achieved in the photon energy range up to ~850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X‐ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ~50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.  相似文献   

18.
在利用步辐射光源的偏振特性进行自旋相关X射线散射及吸收谱实验来研究材料的磁学性质时,需要应用圆偏振光,这就提出了对具有高通量、高偏振度' 长连续可调的圆偏振X射线的需求;另一方面标定实验所用X射线的圆偏振度也成为这一研究领域的关键技术。由于X射线多光束衍射强度与σ场和π场的光程差δ相关,通过测量圆偏振分析晶体的多光束衍射的强度分布,可以获得入射X射线的圆偏振度。实验在美国国家同步辐射光源实验室X25光束线实验站进行,光子能量为7.1keV的圆偏振X射线由线偏振X射线经过一厚度为0.5mm、晶面为[111]的金刚石晶体产生。通过测量多光束衍射强度,确定了斯托克斯参量。实验值与X射线动力学理论计算结果能较好地吻合。  相似文献   

19.
An end‐station for resonant inelastic X‐ray scattering and (resonant) X‐ray emission spectroscopy at beamline ID20 of ESRF – The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high‐energy‐resolution applications, including partial fluorescence yield or high‐energy‐resolution fluorescence detected X‐ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non‐resonant inelastic X‐ray scattering measurements of valence electron excitations.  相似文献   

20.
The resonant scattering and diffraction beamline P09 at PETRA III at DESY is equipped with a 14 T vertical field split‐pair magnet. A helium‐3 refrigerator is available that can be fitted inside the magnet's variable‐temperature insert. Here the results of a series of experiments aimed at determining the beam conditions permitting operations with the He‐3 insert are presented. By measuring the tetragonal‐to‐orthorhombic phase transition occurring at 2.1 K in the Jahn–Teller compound TmVO4, it is found that the photon flux at P09 must be attenuated down to 1.5 × 109 photons s?1 for the sample to remain at temperatures below 800 mK. Despite such a reduction of the incident flux and the subsequent use of a Cu(111) analyzer, the resonant X‐ray magnetic scattering signal at the Tm LIII absorption edge associated with the spin‐density wave in TmNi2B2C below 1.5 K is intense enough to permit a complete study in magnetic field and at sub‐Kelvin temperatures to be carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号