首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction between monomeric bis(1,2,4-tri-tert-butylcyclopentadienyl)cerium hydride, Cp'2CeH, and several hydrofluorobenzene derivatives is described. The aryl derivatives that are the primary products, Cp'2Ce(C6H(5-x)F(x)) where x = 1,2,3,4, are thermally stable enough to be isolated in only two cases, since all of them decompose at different rates to Cp'2CeF and a fluorobenzyne; the latter is trapped by either solvent when C6D6 is used or by a Cp'H ring when C6D12 is the solvent. The trapped products are identified by GC/MS analysis after hydrolysis. The aryl derivatives are generated cleanly by reaction of the metallacycle, Cp'((Me3C)2C5H2C(Me2)CH2)Ce, with a hydrofluorobenzene, and the resulting arylcerium products, in each case, are identified by their (1)H and (19)F NMR spectra at 20 degrees C. The stereochemical principle that evolves from these studies is that the thermodynamic isomer is the one in which the CeC bond is flanked by two ortho-CF bonds. This orientation is suggested to arise from the negative charge that is localized on the ipso-carbon atom due to C(o)(delta+)F(o)(delta-) polarization. The preferred regioisomer is determined by thermodynamic rather than kinetic effects; this is illustrated by the quantitative, irreversible solid-state conversion at 25 degrees C over two months of Cp'2Ce(2,3,4,5-C6HF4) to Cp'2Ce(2,3,4,6-C6HF4), an isomerization that involves a CeC(ipso) for C(ortho)F site exchange.  相似文献   

2.
Addition of CO to [1,2,4-(Me3C)3C5H2]2CeH,Cp'2 CeH, in toluene yields the cis-(Cp'2Ce)2(mu-OCHCHO), in which the cis-enediolate group bridges the two metallocene fragments. The cis-enediolate quantitatively isomerizes intramolecularly to the trans-enediolate in C6D6 at 100 degrees C over 7 months. When the solvent is pentane, Cp'2Ce(OCH2)CeCp'2 forms, in which the oxomethylene group or the formaldehyde dianion bridges the two metallocene fragments. The cis-enediolate is suggested to form by insertion of CO into the Ce-C bond of Cp'2Ce(OCH2)CeCp'2, generating Cp'2CeOCH2COCeCp'2. The stereochemistry of the cis-enediolate is determined by a 1,2-hydrogen shift in the OCH2CO fragment that has the OC(H2) bond anti-periplanar relative to the carbene lone pair. The bridging oxomethylene complex reacts with H2, but not with CH4, to give Cp'2CeOMe, which is also the product of the reaction between Cp'2CeH and a mixture of CO and H2. The oxomethylene complex reacts with CO to give the cis-enediolate complex. DFT calculations on C5H5 model metallocenes show that the reaction of Cp2CeH with CO and H2 to give Cp2CeOMe is exoergic by 50 kcal mol-1. The net reaction proceeds by a series of elementary reactions that occur after the formyl complex, Cp2Ce(eta2-CHO), is formed by further reaction with H2. The key point that emerges from the calculated potential energy surface is the bifunctional nature of the metal formyl in which the carbon atom behaves as a donor and acceptor. Replacing H2 by CH4 increases the activation energy by 17 kcal mol-1.  相似文献   

3.
The net reaction of monomeric Cp'(2)CeH [Cp' = 1,3,4-(Me(3)C)(3)(C(5)H(2))] in C(6)D(6) with C(6)F(6) is Cp'(2)CeF, H(2), and tetrafluorobenzyne. The pentafluorophenylmetallocene, Cp'(2)Ce(C(6)F(5)), is formed as an intermediate that decomposes slowly to Cp'(2)CeF and C(6)F(4) (tetrafluorobenzyne), and the latter is trapped by the solvent C(6)D(6) as a [2+4] cycloadduct. In C(6)F(5)H, the final products are also Cp'(2)CeF and H(2), which are formed from the intermediates Cp'(2)Ce(C(6)F(5)) and Cp'(2)Ce(2,3,5,6-C(6)F(4)H) and from an unidentified metallocene of cerium and the [2+4] cycloadducts of tetra- and trifluorobenzyne with C(6)D(6). The hydride, fluoride, and pentafluorophenylmetallocenes are isolated and characterized by X-ray crystallography. DFT(B3PW91) calculations have been used to explore the pathways leading to the observed products of the exergonic reactions. A key step is a H/F exchange reaction which transforms C(6)F(6) and the cerium hydride into C(6)F(5)H and Cp'(2)CeF. This reaction starts by an eta(1)-F-C(6)F(5) interaction, which serves as a hook. The reaction proceeds via a sigma bond metathesis where the fluorine ortho to the hook migrates toward H with a relatively low activation energy. All products observed experimentally are accommodated by pathways that involve C-F and C-H bond cleavages.  相似文献   

4.
Reactions of various diketo compounds with (trifluoromethyl)trimethylsilane (Me3SiCF3) in the presence of catalytic amounts of cesium fluoride have been studied. gamma-Ketoesters, CH3COCH2CH2CO2R (R = Et, Bu), were reacted with 2 equiv of Me3SiCF3 at room temperature to give CH3C(OH)(CF3)CH2CH2COCF3 in good yield after hydrolysis. alpha-Diketones, R1COCOR2 (R1 = R2 = Ph; R1 = Ph, R2 = Me; R1 = R2 = Me; R1 = Me, R2 = Et), when reacted with Me3SiCF3, formed 1:1 or 1:2 addition products depending on the reaction conditions and stoichiometry used. Reactions of diones CH3COXCOCH3 (X = -CH2CH2-, -C6H4C6H4-, -CH2-) with Me3SiCF3 also led to the formation of the mono- or diaddition products depending on reaction conditions. With various kinds of substituted arylglyoxals, 2 equiv of Me3SiCF3 produced monoaddition products in 70-75% yield and diaddition products in 5-10% yield. One of the monoalcohols and two of the diols have been characterized by single-crystal X-ray analysis, and the presence of inter- and intramolecular hydrogen bonding has been confirmed.  相似文献   

5.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

6.
The rate of reductive elimination for a family of zirconocene isobutyl hydride complexes, Cp(CpR(n)())Zr(CH(2)CHMe(2))H (Cp = eta(5)-C(5)Me(5), CpR(n)() = substituted cyclopentadienyl), has been measured as a function of cyclopentadienyl substituent. In general, the rate of reductive elimination increases modestly with the incorporation of sterically demanding substituents such as [CMe(3)] or [SiMe(3)]. A series of isotopic labeling experiments was used to elucidate the mechanism and rate-determining step for the reductive elimination process. From these studies, a new zirconocene isobutyl hydride complex, Cp' '(2)Zr(CH(2)CHMe(2))(H) (Cp' ' = eta(5)-C(5)H(3)-1,3-(SiMe(3))(2)), was designed and synthesized such that facile reductive elimination of isobutane and activation of dinitrogen was observed. The resulting dinitrogen complex, [Cp' '(2)Zr](2)(mu(2), eta(2),eta(2)-N(2)), has been characterized by X-ray diffraction and displays a bond length of 1.47 A for the N(2) ligand, the longest observed in any metallocene dinitrogen complex. Solution magnetic susceptibility demonstrates that [Cp' '(2)Zr](2)(mu(2), eta(2), eta(2)-N(2)) is a ground-state triplet, consistent with two Zr(III), d(1) centers. Mechanistic studies reveal that the dinitrogen complex is derived from the reaction of N(2) with the resulting cyclometalated zirconocene hydride rather than directly from reductive elimination of alkane.  相似文献   

7.
Reactions of cis-Cp*(CO)2W(MeCN)Me (1) with HSiMe2(CH=CR2) (R = H, Me) afford the novel eta3-1-silaallyl complexes Cp*(CO)2W(eta3-Me2SiCHCR2) [R = H (2), Me (3)] accompanied by liberation of MeCN and CH4 via thermal Si-H bond activation. eta3-Coordination and exo conformation of the 1-silaallyl ligand in 3 are shown by X-ray crystal analysis, which reveals the partial double bond character of the Si-C bond (1.800(4) A) in the silaallyl moiety. Complexes 2 and 3 show extremely high reactivity toward MeOH to give the hydrido-(methoxysilyl)alkene complex trans-Cp*(CO)2WH(eta2-MeOMe2SiCH=CH2) (4) and the four-membered metallacycle Cp*(CO)2WCH(CHMe2)SiMe2OMe (6), respectively.  相似文献   

8.
Hydrolysis of [NbCp'Cl(4)] (Cp' = η(5)-C(5)H(4)SiMe(3)) with the water adduct H(2)O·B(C(6)F(5))(3) afforded the oxo-borane compound [NbCp'Cl(2){O·B(C(6)F(5))(3)}] (2a). This compound reacted with [MgBz(2)(THF)(2)] giving [NbCp'Bz(2){O·B(C(6)F(5))(3)}] (2b), whereas [NbCp'Me(2){O·B(C(6)F(5))(3)}] (2c) was obtained from the reaction of [NbCp'Me(4)] with H(2)O·B(C(6)F(5))(3). Addition of Al(C(6)F(5))(3) to solutions containing the oxo-borane compounds [MCp(R)X(2){O·B(C(6)F(5))(3)}] (M = Ta, Cp(R) = η(5)-C(5)Me(5) (Cp*), X = Cl 1a, Bz 1b, Me 1c; M = Nb, Cp(R) = Cp', X = Cl 2a) afforded the oxo-alane complexes [MCp(R)X(2){O·Al(C(6)F(5))(3)}] (M = Ta, Cp(R) = Cp*, X = Cl 3a, Bz 3b, Me 3c; M = Nb, Cp(R) = Cp', X = Cl 4a), releasing B(C(6)F(5))(3). Compound 3a was also obtained by addition of Al(C(6)F(5))(3) to the dinuclear μ-oxo compound [TaCp*Cl(2)(μ-O)](2), meanwhile addition of the water adduct H(2)O·Al(C(6)F(5))(3) to [TaCp*Me(4)] gave complex 3c. The structure of 2a and 3a was obtained by X-ray diffraction studies. Density functional theory (DFT) calculations were carried out to further understand these types of oxo compounds.  相似文献   

9.
The La(2+) complex [K(18-crown-6)(OEt(2))][Cp″(3)La] (1) [Cp″ = C(5)H(3)(SiMe(3))(2)-1,3], can be synthesized under N(2), but in the presence of KC(5)Me(5), 1 reduces N(2) to the (N═N)(2-) product [(C(5)Me(5))(2)(THF)La](2)(μ-η(2):η(2)-N(2)). This suggests a dichotomy in terms of ligands that optimize isolation of reduced dinitrogen complexes versus isolation of divalent complexes of the rare earths. To determine whether the first crystalline molecular Y(2+) complex could be isolated using this logic, Cp'(3)Y (2) (Cp' = C(5)H(4)SiMe(3)) was synthesized from YCl(3) and KCp' and reduced with KC(8) in the presence of 18-crown-6 in Et(2)O at -45 °C under argon. EPR evidence was consistent with Y(2+) and crystallization provided the first structurally characterizable molecular Y(2+) complex, dark-maroon-purple [(18-crown-6)K][Cp'(3)Y] (3).  相似文献   

10.
The reaction of Cp2Hf(SiMes2H)Me (1) with B(C6F5)3 produces zwitterionic Cp2Hf(eta2-SiHMes2)(mu-Me)B(C6F5)3 (2), which is stable for >8 h at -40 degrees C in toluene-d8. Spectroscopic data provide evidence for an unusual alpha-agostic Si-H interaction in 2. At room temperature, 2 reacts with the C-H bonds of aromatic hydrocarbons such as benzene and toluene to produce Cp2Hf(Ph)(mu-Me)B(C6F5)3 (3), isomers of Cp2Hf(C6H4Me)(mu-Me)B(C6F5)3 (4-6), and Cp2Hf(CH2Ph)(mu-Me)B(C6F5)3 (7), respectively. The reaction involving benzene is first-order in both 2 and benzene; rate = k[2][C6H6]. Mechanistic data including activation parameters (DeltaH = 19(1) kcal/mol; DeltaS = -17(3) eu), a large primary isotope effect of 6.9(7), and the experimentally determined rate law are consistent with a mechanism involving a concerted transition state for C-H bond activation.  相似文献   

11.
Cp(2)ZrH(2) (1) (Cp = pentamethylcyclopentadienyl) reacts with vinylic carbon-fluorine bonds of CF(2)=CH(2) and 1,1-difluoromethylenecyclohexane (CF(2)=C(6)H(10)) to afford Cp(2)ZrHF (2) and hydrodefluorinated products. Experimental evidence suggests that an insertion/beta-fluoride elimination mechanism is occurring. Complex 1 reacts with allylic C-F bonds of the olefins, CH(2)=CHCF(3), CH(2)=CHCF(2)CF(2)CF(2)CF(3), and CH(2)=C(CF(3))(2) to give preferentially 2 and CH(3)-CH=CF(2), CH(3)-CH=CF-CF(2)CF(2)CF(3), and CF(2)=C(CF(3))(CH(3)), respectively, by insertion/beta-fluoride elimination. In the reactions of 1 with CH(2)=CHCF(3) and CH(2)=CHCF(2)CF(2)CF(2)CF(3), both primary and secondary alkylzirconium olefin insertion intermediates were observed in the (1)H and (19)F NMR spectra at low temperature. A deuterium labeling study revealed that more than one olefin-dihydride complex is likely to exist prior to olefin insertion. In the presence of excess 1 and H(2), CH(2)=CHCF(3) and CH(2)=CHCF(2)CF(2)CF(2)CF(3) are reduced to propane and (E)-CH(3)CH(2)CF=CFCF(2)CF(3), respectively.  相似文献   

12.
Tetranuclear cubane-type rare-earth methylidene complexes consisting of four "Cp'LnCH(2)" units, [Cp'Ln(μ(3)-CH(2))](4) (4-Ln; Ln = Tm, Lu; Cp' = C(5)Me(4)SiMe(3)), have been obtained for the first time through CH(4) elimination from the well-defined polymethyl complexes [Cp'Ln(μ(2)-CH(3))(2)](3) (2-Ln) or mixed methyl/methylidene precursors such as [Cp'(3)Ln(3)(μ(2)-Me)(3)(μ(3)-Me)(μ(3)-CH(2))] (3-Ln). The reaction of the methylidene complex 4-Lu with benzophenone leads to C═O bond cleavage and C═C bond formation to give the cubane-type oxo complex [Cp'Lu(μ(3)-O)](4) and CH(2)═CPh(2), while the methyl/methylidene complex 3-Tm undergoes sequential methylidene addition to the C═O group and ortho C-H activation of the two phenyl groups of benzophenone to afford the bis(benzo-1,2-diyl)ethoxy-chelated trinuclear complex [Cp'(3)Tm(3)(μ(2)-Me)(3){(C(6)H(4))(2)C(O)Me}] (6-Tm).  相似文献   

13.
Reactions between HC triple bond CC triple bond CSiMe3 and several ruthenium halide precursors have given the complexes Ru(C triple bond CC triple bond CSiMe3)(L2)Cp'[Cp'= Cp, L = CO (1), PPh3 (2); Cp' = Cp*, L2= dppe (3)]. Proto-desilylation of 2 and 3 have given unsubstituted buta-1,3-diyn-1-yl complexes Ru(C triple bond CC triple bond CH)(L2)Cp'[Cp'= Cp, L = PPh3 (5); Cp'= Cp*, L2 = dppe (6)]. Replacement of H in 5 or 6 with Au(PR3) groups was achieved in reactions with AuCl(PR3) in the presence of KN(SiMe3)2 to give Ru(C triple bond CC triple bond CAu(PR3)](L2)Cp'[Cp' = Cp, L = PPh3, R = Ph (7); Cp' = Cp*, L2= dppe, R = Ph (8), tol (9)]. The asymmetrically end-capped [Cp(Ph3P)2Ru]C triple bond CC triple bond C[Ru(dppe)Cp*] (10) was obtained from Ru(C triple bond CC triple bond CH)(dppe)Cp* and RuCl(PPh3)2Cp. Single-crystal X-ray structural determinations of and are reported, with a comparative determination of the structure of Fe(C triple bond CC triple bond CSiMe3)(dppe)Cp* (4), and those of a fifth polymorph of [Ru(PPh3)2Cp]2(mu-C triple bond CC triple bond C) (12), and [Ru(dppe)Cp]2(mu-C triple bond CC triple bond C) (13).  相似文献   

14.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

15.
Consistent with the C-O cleavage behavior of vinyl ethers, vinyl fluoride reacts with Cp(2)ZrHCl to give Cp(2)ZrFCl and C(2)H(4) as primary products. DFT (B3PW91) calculations show this reaction to be highly exoenergetic (-55 kcal/mol), and reveal a sigma-bond metathesis mechanism to be unfavorable compared to a Zr-H addition across the C=C bond, with regiochemistry placing F on C(beta) of the resulting fluoroethyl ligand. beta-F elimination (onto Zr) then completes the reaction. There is no eta(2)-olefin intermediate on the reaction path. DFT calculations seeking the energy and structure of the two carbenes Cp(2)ZrHCl[CF(CH(3))] and Cp(2)ZrFCl[CH(CH(3))] are also described.  相似文献   

16.
Solution conformations about the metal-carbon bond of the secondary fluoroalkyl ligands in iridium complexes [IrCp(PMe(3))(R(F))X] [Cp* = C(5)Me(5); R(F) = CF(CF(3))(2), X = I (1), CH(3) (2); R(F) = CF(CF(3))(CF(2)CF(3)), X = I (4), CH(3) (5)] have been determined using (19)F[(1)H] HOESY techniques. The molecules adopt the staggered conformation with the tertiary fluorine in the more hindered sector between the PMe(3) and X ligands, with CF(3) (and CF(2)CF(3)) substituents lying in the less hindered regions between PMe(3) and Cp or X and Cp. In molecules containing the CF(CF(3))(2) ligand, these conformations are identical to those adopted in the solid state. For compound 4, containing the CF(CF(3))(CF(2)CF(3)) ligand, two diastereomers are observed in solution. Solution conformations and relative stereocenter configuration assignments have been obtained using (19)F[(1)H] HOESY and correlated with the X-ray structure for the major diastereomer of 4, which has the (S(Ir), S(C)) or (R(Ir), R(C)) configuration. Relative stereocenter configurations of analogue 5, for which no suitable crystals could be obtained, were assigned using (19)F[(1)H] HOESY and proved to be different from 4, with 5 preferring the (S(Ir), R(C)) or (R(Ir), S(C)) configuration.  相似文献   

17.
本文利用等电子金属碎片交换法,由μ3-CPhCo3(CO)9(1)与NaM(CO)3Cp’(M=Mo,W;CP’=CH3C5H4)反应根到μ3-CPhCo2M(CO)8CP’(2a,b),μ3—CPhCoMo2(CO)7Cp'2(4),再由2a与Na2[Fe(CO)4]反应得到手征性簇合物μ3-CPhFeCoMo(CO)2CP'H(3),对合成的簇合物进行了元素分析、IR、1HNMR.MS分析表征.  相似文献   

18.
Cp*(2)ZrH(2) (1) (Cp* = pentamethylcyclopentadienyl) reacts with perfluoropropene (2) to give Cp*(2)ZrHF (3) and hydrodefluorinated products under very mild conditions. Initial C-F bond activation occurs selectively at the vinylic terminal position of the olefin to exchange fluorine for hydrogen. Subsequent hydrodefluorination leads to the formation of the n-propylhydride complex Cp*(2)ZrH(CH(2)CH(2)CH(3)), which can be cleaved with dihydrogen to give propane and 1. A theoretical study of the reaction of Cp*(2)ZrH(2) (Cp* = cyclopentadienyl) and CF(2)[double bond]CF(CF(3)) has been undertaken. Several mechanisms have been examined in detail using DFT(B3PW91) calculations and are discussed for this H/F exchange: (a) internal olefin insertion/beta-fluoride elimination, (b) external olefin insertion/beta-fluoride elimination, and (c) F/H metathesis from either an inside or outside approach. Of these, the first case is found to be energetically preferred. Selective defluorination at the terminal carbon has been shown to be favored over defluorination at the substituted and allylic carbons.  相似文献   

19.
The generation and properties of nonchelated Zr-aryl-alkyne and Zr-aryl-alkene complexes that are stabilized by the presence of beta-Si-substituents in the alkyne and alkene ligands and fluorination of the aryl ligand are described. Reaction of [Cp'2Zr(OtBu)(ClCD2Cl)][B(C6F5)4] (1, Cp' = C5H4Me) with alkyne and alkene substrates (L) generates Cp'2Zr(OtBu)(L)+ adducts (L = HCCCH2SiMe3 (2); H2C=CHCH2SiMe3 (3); HCCMe (4); H2C=CHCH2CMe3 (5)). Equilibrium constants for substrate binding (Keq = [Zr-L][1]-1[L]-1; CD2Cl2, -89 degrees C) are much larger for the beta-Si-substituted compounds 2 (1.0(2) x 105 M-1) and 3 (1.7(4) x 103 M-1) than for hydrocarbon analogues 4 (3.6(7) x 102 M-1) and 5 (1.9(1) M-1), which is ascribed to beta-Si stabilization of the partial positive charge on Cint of the bound substrate. [Cp2Zr(C6F5)][B(C6F5)4] (7, Cp = C5H5) was generated by the reaction of Cp2Zr(C6F5)Me with [Ph3C][B(C6F5)4] in C6D5Cl. Reaction of 7 with alkyne and alkene substrates (L) generates Cp2Zr(C6F5)(L)+ adducts (L = HCCCH2SiMe3 (8); H2C=CHCH2SiMe3 (10)). No insertion of the substrate into the Zr-C6F5 bond is observed in 8 (at -38 degrees C) or 10 (up to 22 degrees C). The allyltrimethylsilane ligand in 10 undergoes nondissociative alkene face exchange ("alkene flipping", i.e., exchange of the Cp2Zr(C6F5)+ unit between the two alkene enantiofaces without alkene dissociation), with a first-order rate constant kflip = 23(1) s-1 (C6D5Cl, -38 degrees C). 10 also undergoes slower reversible decomplexation of the alkene (kdissoc = 5.0(8) s-1; C6D5Cl, -38 degrees C).  相似文献   

20.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号