首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

2.
Study on proton exchange membrane (PEM) with the aim toward excellent battery performance of PEM for fuel cells has attracted increasing attention. In this work, nanocellulose (CNC) aminated by KH792 noted as NN was prepared. CNC or NN/sulfophenylated poly(ether ether ketone ketone) (sPEEKK) nanocomposite membrane (SN) or (SNN) were produced by solution mixing. SNN was further coated with tetraethyl orthosilicate (TEOS) to obtain SNNT. The properties of sPEEKK, SN, SNN, and SNNT membranes were thoroughly investigated. The proton conductivity of SN4 was 0.22 S·cm?1 at 90 °C, while a proton conductivity of 0.30 S·cm?1 was obtained for SNN4, and an even higher value of 0.36 S·cm?1 at 90 °C was obtained for the TEOS‐coated SNN4 (SNN4T). Meanwhile, SNN4T showed high thermal stability, and its Td5 was as high as 318.2 °C. Furthermore, the composite membrane coated with TEOS also presented excellent oxidative stability. The mass of SNN2T after treated in Fenton agent for 1 h at 80 °C was still retained 96.2%, and it was not fully dissolved until 11 h. It was illustrated that aminated CNC/sPEEKK nanocomposite membranes coated with TEOS is a kind of promising materials as PEMs for fuel cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2190–2200  相似文献   

3.
The synthesis and characterization of a series of zwitterionic hybrid membranes based on a zwitterionic siloxane precursor (ZS) are described. Flexible, transparent, optically homogeneous films were prepared. With the further incorporation of poly(ethylene glycol) (PEG), the hybrid films became more flexible but translucent. The structure of the inorganic sides was probed with solid‐state 29Si NMR spectroscopy, and the organic sides and the chemical process involved were characterized with solid‐state 13C cross‐polarization/magic‐angle spinning NMR. A higher content of ZS led to higher proton conductivity of the hybrid electrolytes. Moreover, the proton conductivity was enhanced by the addition of the plasticizing component of PEG to the hybrid matrix; this was ascribed to the increased water uptake and free volume of the hybrid matrix and the dissociation of sulfonic acid groups. The proton conductivity of these hybrid membranes could be increased up to 3.5 × 10?2 S/cm by the temperature and relative humidity being increased to 85 °C and 95%, respectively. The proton‐conduction behavior of these hybrid membranes is also briefly discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3444–3453, 2006  相似文献   

4.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

5.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

7.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   

8.
Partially sulfonated poly(aryl ether sulfone) (PESS) was synthesized and methacrylated via reaction with glycidyl methacrylate (PESSGMA) and cross‐linked via radical polymerization with styrene and vinyl‐phosphonic acid (VPA). The chemical structures of the synthesized pre‐polymers were characterized via FTIR and 1H NMR spectroscopic methods and molecular weight was determined via GPC. Membranes of these polymers were prepared via solution casting method. The crosslinking of the PESS polymer reduced IEC, proton conductivity, swelling in water, and methanol permeability of the membranes while increasing the modulus and the glass transition temperature. However, the introduction of the VPA comonomer increased the proton conductivity while maintaining excellent resistance to methanol cross‐over, which was significantly higher as compared with both PESS and the commercial Nafion membranes. Membranes of PESSGMA copolymers incorporating VPA, exhibited proton conductivity values at 60 °C in the range of 16–32 mS cm−1 and methanol permeability values in the range of 6.52 × 10−9 – 1.92 × 10−8 cm2 s−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 558–575  相似文献   

9.
Throughout this work, the synthesis, thermal as well as proton conducting properties of acid doped heterocyclic polymer were studied under anhydrous conditions. In this context, poly(1‐vinyl‐1,2,4‐triazole), PVTri was produced by free radical polymerization of 1‐vinyl‐1,2,4‐triazole with a high yield. The structure of the homopolymer was proved by FTIR and solid state 13C CP‐MAS NMR spectroscopy. The polymer was doped with p‐toluenesulfonic acid at various molar ratios, x = 0.5, 1, 1.5, 2, with respect to polymer repeating unit. The proton transfer from p‐toluenesulfonic acid to the triazole rings was proved with FTIR spectroscopy. Thermogravimetry analysis showed that the samples are thermally stable up to ~250 °C. Differential scanning calorimetry results illustrated that the materials are homogeneous and the dopant strongly affects the glass transition temperature of the host polymer. Cyclic voltammetry results showed that the electrochemical stability domain extends over 3 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Charge transport relaxation times were derived via complex electrical modulus formalism (M*). The temperature dependence of conductivity relaxation times showed that the proton conductivity occurs via structure diffusion. In the anhydrous state, the proton conductivity of PVTri1PTSA and PVTri2PTSA was measured as 8 × 10?4 S/cm at 150 °C and 0.012 S/cm at 110 °C, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1016–1021, 2010  相似文献   

10.
A novel graft copolymer consisting of a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(glycidyl methacrylate) side chains, that is, P(VDF‐co‐CTFE)‐g‐PGMA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and microphase‐separated structure of the polymer were confirmed by 1H NMR, FTIR spectroscopy, and TEM. As‐synthesized P(VDF‐co‐CTFE)‐g‐PGMA copolymer was sulfonated by sodium bisulfite, followed by thermal crosslinking with sulfosuccinic acid (SA) via the esterification to produce grafted/crosslinked polymer electrolyte membranes. The IEC values continuously increased with increasing SA content but water uptake increased with SA content up to 10 wt %, above which it decreased again as a result of competitive effect between crosslinking and hydrophilicity of membranes. At 20 wt % of SA content, the proton conductivity reached 0.057 and 0.11 S/cm at 20 and 80 °C, respectively. The grafted/crosslinked P(VDF‐co‐CTFE)‐g‐PGMA/SA membranes exhibited good mechanical properties (>400 MPa of Young's modulus) and high thermal stability (up to 300 °C), as determined by a universal testing machine (UTM) and TGA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1110–1117, 2010  相似文献   

11.
Novel sulfonated diamines bearing aromatic pendant groups, namely, 3,5‐diamino‐3′‐sulfo‐4′‐(4‐sulfophenoxy) benzophenone (DASSPB) and 3,5‐diamino‐3′‐sulfo‐4′‐(2,4‐disulfophenoxy) benzophenone (DASDSPB), were successfully synthesized. Novel side‐chain‐type sulfonated (co)polyimides (SPIs) were synthesized from these two diamines, 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA) and nonsulfonated diamines such as 4,4′‐bis(3‐aminophenoxy) phenyl sulfone (BAPPS). Tough and transparent membranes of SPIs with ion exchange capacity of 1.5–2.9 meq g?1 were prepared. They showed good solubility and high thermal stability up to 300 °C. They showed isotropic membrane swelling in water, which was different from the main‐chain‐type and sulfoalkoxy‐based side‐chain‐type SPIs. The relative humidity (RH) and temperature dependence of proton conductivity were examined. At low RH, the novel SPI membranes showed much higher conductivity than the sulfoalkoxy‐based SPIs. They showed comparable or even higher proton conductivity than Nafion 112 in water at 60 °C (>0.10 S cm?1). The membrane of NTDA‐DASDSPB/BAPPS (1/1)‐s displayed reasonably high proton conductivities of 0.05 and 0.30 S cm?1 at 50 and 100% RH, respectively, at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2862–2872, 2006  相似文献   

12.
A series of ionic ABA triblock copolymers having a central polysulfone (PSU) block and poly(2,3,5,6,‐tetrafluorostyrene‐4‐phosphonic acid) (PTFSPA) outer blocks with different lengths were prepared and studied as electrolyte membranes. PSU with terminal benzyl bromide was used as a bifunctional macroinitiator for the formation of poly(2,3,4,5,6‐pentafluorostyrene) (PPFS) blocks by atom transfer radical polymerization. Selective and complete phosphonation of the PPFS blocks was achieved via a Michaelis?Arbuzov reaction using tris(trimethylsilyl)phosphite at 170 °C. Copolymer films were cast from solution and subsequently fully hydrolyzed to produce transparent flexible proton conducting PTFSPA‐b‐PSU‐b‐PTFSPA membranes with a thermal stability reaching above 270 °C under air, and increasing with the PTFSPA content. Studies of thin copolymer electrolyte membranes by tapping mode atomic force microscopy showed phase separated morphologies with continuous proton conducting PTFSPA nano scale domains. Block copolymer membranes reached a proton conductivity of 0.08 S cm?1 at 120 °C under fully hydrated conditions, and 0.8 mS cm?1 under 50% relative humidity at 80 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4657–4666  相似文献   

13.
To improve the proton conductivity and thermal stability of proton exchange membrane, hybrid poly (arylene ether) multiblock copolymers were synthesized by using 6F-bisphenol A monomer. The hydrophobic oligomers poly (arylene ether sulfone) containing 6F-bisphenol A with varying molecular weight were copolymerised with hydrophilic oligomer disulfonated poly (arylene ether ketone) containing pendant carboxylic acid group to prepare multiblock copolymers. For further enhancing the proton conductivity, ionic liquid is embedded into the synthesized multiblock copolymers to fabricate the hybrid multiblock membranes. The 1H NMR studies confirmed the synthesis of oligomers and multiblock copolymers whereas the FT-IR spectra revealed the interaction of ionic liquid with the multiblock copolymers. The proton conductivity of the membranes has also been examined at different temperatures and the activation energy required for the proton transport was calculated by using Arrhenius equation. At 30 °C, the maximum proton conductivity of 0.14 S/cm were shown by hybrid membrane (with 50% ionic liquid, 6FB1/I.L-50%), which is of 3.5 times greater than that of pristine 6FB1 membrane. Compared with pristine membranes, the hybrid membranes exhibit improved oxidative, thermal and mechanical stability. Moreover, the scanning electron microscopy (SEM) investigation depicts better phase separation in hybrid membranes than pristine membranes by forming ionic clusters. The membranes have been tested in H2/O2 fuel cell and their performance is compared with the state-of-art Nafion 117 membrane.  相似文献   

14.
Sulfonated polyaryletherketones (SPAEK) bearing four sulfonic acid groups on the phenyl side groups were synthesized. The benzophenone moiety of polymer backbone was further reduced to benzydrol group with sodium borohydride. The membranes were crosslinked by acid-catalyzed Friedel-Crafts reaction without sacrifice of sulfonic acid groups and ion exchange capacity (IEC) values. Crosslinked membranes with the same IEC value but different water uptake could be prepared. The optimal crosslinking condition was investigated to achieve lower water uptake, better chemical stability (Fenton's test), and higher proton conductivity. In addition, the hydrophilic ionic channels from originally course and disordered could be modified to be narrow and continuous by this crosslinking method. The crosslinked membranes, CS4PH-40-PEKOH (IEC = 2.4 meq./g), reduced water uptake from 200 to 88% and the weight loss was reduced from 11 to 5% during the Fenton test compared to uncrosslinked one (S4PH-40-PEK). The membrane showed comparable proton conductivity (0.01–0.19 S/cm) to Nafion 212 at 80°C from low to high relative humidity (RH). Single H2/O2 fuel cell based on the crosslinked SPAEK with catalyst loading of 0.25 mg/cm2 (Pd/C) exhibited a peak power density of 220.3 mW/cm2, which was close to that of Nafion 212 (214.0 mW/cm2) at 80°C under 53% RH. These membranes provide a good option as proton exchange membrane with high ion exchange capacity for fuel cells.  相似文献   

15.
Phosphoric acid doped poly (2, 2′‐(m‐phenylene)‐5, 5′‐bibenzimidazole) (PBI) membranes were prepared by dissolving PBI powders in 85% phosphoric acid at 190–200°C and then promoting gelation of the PBI by cooling the solutions to ?18°C. The extent of acid doping of the PBI membranes was controlled by immersing the membrane in aqueous phosphoric acid solutions of different concentrations (acid de‐doping). The process of the acid de‐doping was faster than acid doping of membrane cast from N,N‐dimethylacetamide (DMAc). The de‐doping process caused shrinkage of the PBI membrane and thus an increase in the membrane strength due to the packing of PBI chains according to the X‐ray diffraction analysis. The tensile stress and proton conductivity of the obtained PBI membranes with different acid doping levels were measured. For a PBI (ηIV: 0.58 dL · g?1) membrane with an acid doping level of 7.0 (molar number of doped acid per mole repeat unit of PBI), the stress at break and proton conductivity at 120°C without humidification were 2.6 MPa and 5.1 × 10?2 S · cm?1, respectively. These results were comparable to those of the membranes cast from PBI solutions in DMAc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   

17.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   

18.
Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) backbone was grafted with crosslinkable chains of poly(hydroxyl ethyl acrylate) (PHEA) and proton conducting chains of poly(styrene sulfonic acid) (PSSA) to produce amphiphilic P(VDF‐co‐CTFE)‐g‐P(HEA‐co‐SSA) graft copolymer via atom transfer radical polymerization (ATRP). Successful synthesis and microphase‐separated structure of the copolymer were confirmed by 1H NMR, FT‐IR spectroscopy, and TEM analysis. Furthermore, this graft copolymer was thermally crosslinked with sulfosuccinic acid (SA) to produce grafted/crosslinked membranes. Ion exchange capacity (IEC) increased continuously with increasing SA contents but the water uptake increased up to 6 wt% of SA concentration, above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.062 S/cm at 6 wt% of SA concentration, resulting from competitive effect between the increase of ionic groups and the degree of crosslinking. XRD patterns also revealed that the crystalline structures of P(VDF‐co‐CTFE) disrupted upon graft polymerization and crosslinking. These membranes exhibited good thermal stability at least up to 250°C, as revealed by TGA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A new bisphenol monomer containing a pair of electron‐rich tetra‐arylmethane units was designed and synthesized. Based on this monomer, along with commercial 4,4′‐(hexafluoroisopropylidene)diphenol A and 4,4′‐difluorobenzophenone, a series of novel poly(arylene ether ketone)s containing octasulfonated segments of varying molar percentage (x) (6F‐SPAEK‐x) were successfully synthesized by polycondensation reactions, followed by sulfonation. Tough, flexible, and transparent membranes, exhibiting excellent thermal stabilities and mechanical properties were obtained by casting. 6F‐SPAEK‐x samples exhibited appropriate water uptake and swelling ratios at moderate ion exchange capacities (IECs) and excellent proton conductivities. The highest proton conductivity (215 mS cm−1) is observed for hydrated 6F‐SPAEK‐15 (IEC = 1.68 meq g−1) at 100 °C, which is more than 1.5 times that of Nafion 117. Furthermore, the 6F‐SPAEK‐10 membrane exhibited comparable proton conductivity (102 mS cm−1) to that of Nafion 117 at 80 °C, with a relatively low IEC value (1.26 meq g−1). Even under 30% relative humidity, the 6F‐SPAEK‐20 membrane (2.06 meq g−1) showed adequate conductivity (2.1 mS cm−1) compared with Nafion 117 (3.4 mS cm−1). The excellent comprehensive properties of these membranes are attributed to well‐defined nanophase‐separated structures promoted by strong polarity differences between highly ionized and fluorinated hydrophobic segments. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 25–37  相似文献   

20.
In this work, sulfonic acid functionalized hollow silica spheres (SAFHSS)/Nafion® composite membranes were prepared by a recasting procedure. The influences of temperature on water uptake, swelling degree, and proton conductivity of the composite membranes were studied. In comparison with the pure recast Nafion® membrane, it was found that water uptake of composite membranes increased with increasing SAFHSS loading at all temperature studied. The swelling degree of SAFHSS/Nafion® composite membranes with 10~15 wt % SAFHSS loading was lower than that of the pure recast Nafion® at all temperatures in the study. The proton conductivity of SAFHSS/Nafion® composite membranes was constantly higher than that of the pure recast Nafion® at all temperatures (50~130 °C). In a range from 50 to 130 °C, the highest conductivity of composite membranes was obtained when 10 wt % SAFHSS was loaded. The maximum conductivity reached 0.1 S cm?1 at 100% relative humidity and 100 °C, even the temperature reached to 130 °C, the conductivity of the composite membranes with 10 wt % SAFHSS was still as high as 4.4 × 10?2 S cm?1 at 100% relative humidity, whereas the conductivity of the pure recast Nafion® was only 2.2 × 10?3 S cm?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2647–2655, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号