首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To compute long term integrations for the pantograph differential equation with proportional delay qt, 0 < q ⩽ 1: y′(t) = ay(t) + by(qt) + f(t), y(0) = y 0, we offer two kinds of numerical methods using special mesh distributions, that is, a rational approximant with ‘quasi-uniform meshes’ (see E. Ishiwata and Y. Muroya [Appl. Math. Comput., 2007, 187: 741-747]) and a Gauss collocation method with ‘quasi-constrained meshes’. If we apply these meshes to rational approximant and Gauss collocation method, respectively, then we obtain useful numerical methods of order p * = 2m for computing long term integrations. Numerical investigations for these methods are also presented.   相似文献   

2.
3.
The oscillatory nature of two equations (r(t) y′(t))′ + p1(t)y(t) = f(t), (r(t) y′(t))′ + p2(t) y(t ? τ(t))= 0, is compared when positive functions p1 and p2 are not “too close” or “too far apart.” Then the main theorem states that if h(t) is eventually negative and a twice continuously differentiable function which satisfies (r(t) h′(t))′ + p1(t) h(t) ? 0, then this inequality is necessary and sufficient for every bounded solution of (r(t) y′(t))′ + p2(t) y(t ? τ(t)) = 0 to be nonoscillatory.  相似文献   

4.
Let F1(x, y),…, F2h+1(x, y) be the representatives of equivalent classes of positive definite binary quadratic forms of discriminant ?q (q is a prime such that q ≡ 3 mod 4) with integer coefficients, then the number of integer solutions of Fi(x, y) = n (i = 1,…, 2h + 1) can be calculated for each natural number n using L-functions of imaginary quadratic field Q((?q)1/2).  相似文献   

5.
When m = qt, g(xt+1, x2t+1,…, x(q?1)t+1) is a linear combination of only odd (or only even) elementary symmetric functions, then every cycle of the nonlinear shift register with feedback function f(x1, x2,…, xm) = x1 + g(xt+1, x2t+1,…, x(q?1)t+1) has a minimal period dividing m(q+1). It is also shown that when g is derived from a cyclic code with minimum distance ?3, every cycle of this shift register has a minimal period dividing m(q + 1).  相似文献   

6.
We consider a class of continuous non-linear systems defined by the ordinary differential equation x = f(x, t) + g(x, t)u, where u is an unknown input representing noise or disturbances. The object is to estimate states and parameters in these systems by means of a fixed number of discrete observations yi = h(x(ti), ti) + vi, 1 ? i ? m, where the vi represents unknown errors in the measurements yi. No statistical assumptions are made concerning the nature of the unknown input u or the unknown measurement errors vi. A weighted least squares criterion is defined as a measure of the optimal estimate. A result concerning the existence of solutions of the differential equation which minimize the criterion is presented. The necessary conditions for an optimal estimate, a set of Euler-Lagrange equations and multi-point discontinuous non-linear boundary conditions, are given. The multi-point problem is converted to an equivalent continuous two-point boundary value problem of larger dimension in the case in which the observations are assumed to be linear functions of the state. A pair of equivalent quasilinearization algorithms is defined for the two-point system and the multi-point system. Quadratic convergence for these algorithms is proved.  相似文献   

7.
Let K(s, t) be a continuous function on [0, 1] × [0, 1], and let K be the linear integral operator induced by the kernel K(s, t) on the space L2[0, 1]. This note is concerned with moment-discretization of the problem of minimizing 6Kx?y6 in the L2-norm, where y is a given continuous function. This is contrasted with the problem of least-squares solutions of the moment-discretized equation: ∝01K(si, t) x(t) dt = y(si), i = 1, 2,h., n. A simple commutativity result between the operations of “moment-discretization” and “least-squares” is established. This suggests a procedure for approximating K2y (where K2 is the generalized inverse of K), without recourse to the normal equation K1Kx = K1y, that may be used in conjunction with simple numerical quadrature formulas plus collocation, or related numerical and regularization methods for least-squares solutions of linear integral equations of the first kind.  相似文献   

8.
The aims of this paper are (i) to present a survey of recent advances in the analysis of superconvergence of collocation solutions for linear Volterra-type functional integral and integro-differential equations with delay functions θ(t) vanishing at the initial point of the interval of integration (with ia(t) = qt (0 < q < 1, t ⩾ 0) being an important special case), and (ii) to point, by means of a list of open problems, to areas in the numerical analysis of such Volterra functional equations where more research needs to be carried out.   相似文献   

9.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

10.
Several oscillation criteria are given for the second-order damped nonlinear differential equation (a(t)[y′(t)]σi +p(t)[y′(t)]σ +q(t)f(y(t)) = 0, where σ > 0 is any quotient of odd integers, a ϵ C(R, (0, ∞)), p(t) and q(t) are allowed to change sign on [to, ∞), and f ϵ Cl (R, R) such that xf (x) > 0 for x≠0. Our results improve and extend some known oscillation criteria. Examples are inserted to illustrate our results.  相似文献   

11.
On the interval [t 0, ∞), we consider the following group pursuit problem with one evader: 1 $$ z_i^{(l)} + a_1 (t)z_i^{(l - 1)} + a_2 (t)z_i^{(l - 2)} + \cdots + a_l (t)z_i = u_i - v, u_i ,v \in V, z_i^{(q)} (t_0 ) = z_i^q , $$ where z i , u i , vR v , (v ≥ 2), V is a strictly convex compact set in R v , the functions a 1(t), a 2(t), …, a l (t) are continuous, i = 1, 2, …, n and q = 0, 1, …, l ? 1. Let ? q (t, s) be the solution of the Cauchy problem $$ \begin{gathered} \omega ^{(l)} + a_1 (t)\omega ^{(l - 1)} + a_2 (t)\omega ^{(l - 2)} + \cdots + a_l (t)\omega = 0, \omega ^{(q)} (s) = 1, \hfill \\ \omega ^{(r)} (s) = 0, r = 0, \ldots q - 1,q + 1, \ldots ,l - 1, \hfill \\ \end{gathered} $$ and let $$ \xi _\iota (t) = \varphi _0 (t,t_0 )Z_i^0 + \varphi _1 (t,t_0 )Z_i^1 + \cdots + \varphi _{l - 1} (t,t_0 )Z_i^{l - 1} . $$ We prove that if there exist continuous functions α i (t) and ξ i 1 (t) such that the ξ i 1 (t) are Bohr almost periodic on [t 0, ∞), α i (t) > 0 for all tt 0, lim t→∞(ξ i 1 (t) ? α i (t)ξ i (t)) = 0, lim t→∞(min i α i (t) ∝ t0 t |? l?1(t, s)| ds) = ∞, and there exist points h i 0 H i 1 = {ξ i 1 (t), t ∈ [0, ∞)} such that 0 ∈ Int co{h i 0 }, then the pursuit problem with evader discrimination is solvable.  相似文献   

12.
We analyze the asymptotic stability of collocation solutions in spaces of globally continuous piecewise polynomials on uniform meshes for linear delay differential equations with vanishing proportional delay qt (0<q<1) (pantograph DDEs). It is shown that if the collocation points are such that the analogous collocation solution for ODEs is A-stable, then this asymptotic behaviour is inherited by the collocation solution for the pantograph DDE.  相似文献   

13.
The l2-norm of the infinite vector of the terms of the Taylor series of an analytic function is used to measure the “unsmoothness” of the function. The sets of solutions to the scalar differential equations y′(t) = λy(t) + f(t) and y′(t) = q(t)y(t) + f(t) are analyzed with respect to this norm. A number of results on the particular solution with minimum norm are given.  相似文献   

14.
A one dimensional problem for SH waves in an elastic medium is treated which can be written as vtt = A?1 (Avy)y, A = (?μ)1/2, ? = density, and μ = shear modulus. Assume A ? C1 and A′/A ? L1; from an input vy(t, 0) = ?(t) let the response v(t, 0) = g(t) be measured (v(t, y) = 0 for t < 0). Inverse scattering techniques are generalized to recover A(y) for y > 0 in terms of the solution K of a Gelfand-Levitan type equation, .  相似文献   

15.
Let At(i, j) be the transition matrix at time t of a process with n states. Such a process may be called self-adjusting if the occurrence of the transition from state h to state k at time t results in a change in the hth row such that At+1(h, k) ? At(h, k). If the self-adjustment (due to transition hkx) is At + 1(h, j) = λAt(h, j) + (1 ? λ)δjk (0 < λ < 1), then with probability 1 the process is eventually periodic. If A0(i, j) < 1 for all i, j and if the self-adjustment satisfies At + 1(h, k) = ?(At(h, k)) with ?(x) twice differentiable and increasing, x < ?(x) < 1 for 0 ? x < 1,?(1) = ?′(1) = 1, then, with probability 1, lim At does not exist.  相似文献   

16.
Approximation results for J. S. Mac Nerney's theory of nonlinear integral operations are established. For the nonlinear product integral xΠy (1 + V)P, approximations of the form Πi = 1n [1 + Lq(xi?1, xi)]P are considered, where L1(u, v)P = ∝uvVP and Lq(u, v)P = ∝uvV(r, s)[1 + Lq?1(s, v)]P for q = 2, 3,…. Error bounds are obtained for the difference between the product integral and the preceding product.  相似文献   

17.
For 1 ⩽kn − 1 and 0 ⩽qk − 1, solutions are obtained for the boundary value problem, (−1)nk = f(x,y), y(i)=0, 0⩽ik − 1, and y(i) = 0, qjnk + q − 1, where f(x,y) is singular at y = 0. An application is made of a fixed point theorem for operators that are decreasing with respect to a cone.  相似文献   

18.
This paper deals with ut = Δu + um(xt)epv(0,t), vt = Δv + uq(0, t)env(x,t), subject to homogeneous Dirichlet boundary conditions. The complete classification on non-simultaneous and simultaneous blow-up is obtained by four sufficient and necessary conditions. It is interesting that, in some exponent region, large initial data u0(v0) leads to the blow-up of u(v), and in some betweenness, simultaneous blow-up occurs. For all of the nonnegative exponents, we find that u(v) blows up only at a single point if m > 1(n > 0), while u(v) blows up everywhere for 0 ? m ? 1 (n = 0). Moreover, blow-up rates are considered for both non-simultaneous and simultaneous blow-up solutions.  相似文献   

19.
In this paper, we study integral operators of the form Tαf(x)=∫Rn|x-A1y|-α1 ··· |x-Amy|-αmf(y)dy,where Ai are certain invertible matrices, αi 0, 1 ≤ i ≤ m, α1 + ··· + αm = n-α, 0 ≤α n. For 1/q = 1/p-α/n , we obtain the Lp (Rn, wp)-Lq(Rn, wq) boundedness for weights w in A(p, q) satisfying that there exists c 0 such that w(Aix) ≤ cw(x), a.e. x ∈ Rn , 1 ≤ i ≤ m.Moreover, we obtain theappropriate weighted BMO and weak type estimates for certain weights satisfying the above inequality. We also give a Coifman type estimate for these operators.  相似文献   

20.
In this paper the long-term behavior of solutions to the equation in the title are examined, where qi(t) and Ti(t) are positive. In particular, it is shown that if lim inft → ∝i = 1nTi(t) qi(t) > 1/e, all solutions oscillate about 0 infinitely often.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号