首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic foods and crops are produced throughout the world under strict controls on growing conditions, so that synthetic chemicals, irradiation or genetic modifications are avoided. Organic starch is extracted following the same rules. Heat–moisture treatment (HMT) on starch is a physical method considered to be natural: it consists of heating starch at a temperature above its gelatinisation point with insufficient moisture (<35 %) to cause gelatinisation. Samples of organic cassava starch (with 12.8 % moisture) were dried in an oven with forced air circulation at 50 °C for 48 h and, immediately, distilled water was added to each sample until it reached the ratios of 10, 20, and 30 %, respectively. The samples were transferred into 100 mL pressure flasks, sealed tightly with a cap, and maintained in an autoclave for 60 min at 120 °C. The flasks were opened and the samples were kept in a desiccator containing anhydrous calcium chloride up to constant mass. The effects of HMT were studied using the following techniques: thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), rapid viscoamylographic analysis (RVA), reflectance photocolorimetry, atomic force microscopy (NC-AFM) and X-ray diffractometry (XRD). Rheological properties such as the pasting temperature (RVA) and the peak temperature (DSC) increased, while gelatinisation enthalpy ?H (DSC) decreased. The average diameters of the granules showed no significant changes, while the degree of relative crystallinity decreased.  相似文献   

2.
Three samples of native or untreated cassava starch were exposed to microwave radiation for periods of 5, 10 or 15 min. The temperature of each sample was measured immediately after each exposure time and the temperature of the samples was around 135 °C. The samples were cooled to room temperature and maintained in a desiccator with anhydrous calcium chloride. All the samples were analysed by thermogravimetry-derivative thermogravimetry, differential scanning calorimetry (DSC), rapid viscoamylographic analysis (RVA), X-ray diffraction powder patterns, non-contact atomic force microscopy and colour characteristics by reflectance spectrophotometry. The thermal behaviour, gelatinisation temperatures, enthalpy and pasting properties were determined. Relative to the time of microwave exposure, the peak viscosity and gelatinisation (RVA and DSC) increased slightly after 5 min, and, after 10 and 15 min, it decreased considerably. The degree of relative crystallinity (%) decreased, while the average roughness increased. The reflectance spectrophotometry showed that microwave action occured quickly and progressively, causing colour changes (mainly with trends to yellow) and very small differences to the starch samples that were heated at controlled temperature in a conventional oven.  相似文献   

3.
In this study, samples of native waxy corn starch, waxy corn starch treated with HCl 0.15 mol L?1 at 20 and 50 °C, respectively, were analysed. The thermogravimetric curves showed similar behaviour with three main mass losses and a decrease in the thermal stability. The acid hydrolysis in low HCl concentration performed for 4 h caused a decrease in peak temperature (DSC), viscosity peak (RVA), gelatinisation enthalpy (DSC) and relative crystallinity (XRD), and an increase in the average roughness (NC-AFM). The X-ray diffraction patterns displayed the ‘A’ type for all the starch granules.  相似文献   

4.
First-line drugs (rifampicin, RIF; isoniazid, INH; ethambutol, ETA; and pyrazinamide, PZA) recommended in conventional treatment of tuberculosis were analyzed in 1:1 w/w binary mixtures with microcrystalline cellulose MC 101 (CEL) and lactose supertab® (LAC) by differential scanning calorimetry (DSC), thermogravimetry (TG), differential thermal analysis (DTA), and Fourier transformed infrared analysis (FTIR) as part of development of fixed dose combination (FDC) tablets. Evidence of interaction between drug and pharmaceutical excipients was supposed when peaks disappearance or shifting were observed on DTA and DSC curves, as well as decreasing of decomposition temperature onset and TG profiles, comparing to pure species data submitted to the same conditions. LAC was showed to interact with RIF (absence of drug fusion and recrystallization events on DSC/DTA curves); INH (thermal events of the mixtures different from those observed for drug and excipient pure in DSC/DTA curves); PZA (decrease on drug fusion peak in DSC/DTA curves), and ETA (shift on drug onset fusion and absence of pure LAC events on DSC/DTA curves). In all cases, an important decrease on the temperature of drug decomposition was verified for the mixtures (TG analysis). However, FTIR analysis showed good correlation between theoretical and experimental drug-LAC spectra except for INH–LAC mixture, evidencing high incompatibility between these two species and suggesting that those interactions with PZA and RIF were thermally induced. No evidence of incompatibilities in CEL mixtures was observed to any of the four-studied drugs.  相似文献   

5.
The objective of this study was to obtain and characterize flours and starches from the avocado seeds of Hass and landrace cultivars. The morphological, physical-chemical, structural, thermal and rheological characteristics were evaluated. The flour yield of the Hass and landrace cultivars was 41.56 to 46.86% (w/w), while for starch, it was 35.47 to 39.57% (w/w) (cv. Hass and landrace, respectively). Scanning electron microscopy (SEM) revealed the presence of oval starch granules and other particles in flour, in contrast to flours, starches showed lower ash, proteins and lipids content. However, the amylose content was higher in starches (42.25–48.2%). Flours showed a higher gelatinization temperature (Tp = 73.17–73.62 °C), and their starches presented greater gelatinization enthalpy (∆Hgel = 11.82–13.43 J/g). All samples showed a B-type diffraction pattern, and the crystallinity was higher in the flours. The rheological analysis (flow curves and viscoelastic tests) evidenced a pseudoplastic (n = 0.28–0.36) behavior in all samples analyzed, but the consistency index (k) was higher in starches. In general, the flours and starches from avocado seeds presented interesting proximal, thermal and functional properties for possible application in food systems, and these findings could contribute to the revaluation of this by-product.  相似文献   

6.
The use of chemically modified starches is widely accepted in various industries, with several applications. In this research, natural cassava starch granules were treated with standard sodium hypochlorite solution at 0.8, 2.0, and 5.0 g Cl/100 g starch. The native and modified starch samples were investigated by means of the following techniques: simultaneous thermogravimetry–differential thermal analysis, which allowed us to verify the thermal decomposition associated with endothermic or exothermic phenomena; and differential scanning calorimetry that was used to determine gelatinization enthalpy as well as the rapid viscoamylographic analysis that provided the pasting temperature and viscosity. By means of non-contact-atomic force microscopy method and X-ray powder patterns diffractometry, it was possible to observe the surface morphology, topography of starch granules, and alterations in the granules’ crystallinity.  相似文献   

7.
The study of the incorporation of rare earth elements as additives in Y zeolites is a very interesting field of research, mainly by its potential application as additives in catalytic cracking process. In this work was studied the thermal and structural properties of cerium, holmium and samarium supported on HZSM-12 zeolite. The obtained materials were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), nitrogen adsorption, thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). TG/DSC/DTA analyses showed that the dehydration temperatures of RE/HZSM-12 zeolites (RE=Ce, Ho, Sm) increase in relation to pure HZSM-12. The acid properties were investigated by pyridine thermo desorption via TG. The results showed two events of mass loss attributed to elimination of pyridine adsorbed on the weak+medium acid sites and on the strong acid sites.  相似文献   

8.
The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total starch and amylose content as compared to DF. Starch granules of DF were oval shape with rough surface while DS and PDS were relatively smooth by SEM. According to XRD measurements, FT-IR spectroscopy and 13 C CP/MAS NMR spectroscopy, all samples displayed C-type crystalline pattern, and PDS displayed the highest relative crystallinity and short-range order structure. However, DF contained the greatest content of the amorphous-phase. DF displayed the absorption peaks at 1730 and 1560 cm~(-1) related to the characteristic groups of lipid and protein using FT-IR spectroscopy. Furthermore, DF exhibited significantly higher pasting temperature while DS displayed the great peak and breakdown viscosity, as well as PDS had the highest setback and final viscosity, presumably due to the chemical composition and structural differences. DF exhibited the highest gelatinization temperature whereas PDS displayed the greatest gelatinization enthalpy. The pasting and gelatinization properties of flour and starch might be related to the relative crystallinity, short-range order structure or the interactions between starch and its associated compounds. The results allow the improvement in the manufacture of Dioscorea opposita Thunb. flour and starch with desirable pasting and gelatinization properties.  相似文献   

9.
Characterization, thermal stability, and thermal decomposition of alkaline earth metal mandelates, M(C6H5CH(OH)CO2)2, (M = Mg(II), Ca(II), Sr(II), and Ba(II)), were investigated employing simultaneous thermogravimetry and differential thermal analysis or differential scanning calorimetry, (TG–DTA or TG–DSC), infrared spectroscopy (FTIR), complexometry, and TG–DSC coupled to FTIR. All the compounds were obtained in the anhydrous state and the thermal decomposition occurs in three steps. The final residue up to 585 °C (Mg), 720 °C (Ca), and 945 °C (Sr) is the respective oxide MgO, CaO, and SrO. For the barium compound the final residue up to 580 °C is BaCO3, which is stable until 950 °C and above this temperature the TG curve shows the beginning of the thermal decomposition of the barium carbonate. The results also provide information concerning the thermal behavior and identification of gaseous products evolved during the thermal decomposition of these compounds.  相似文献   

10.
Solid state Ln–L compounds, where Ln stands for light trivalent lanthanides (L–Gd) and L is tartrate, have been synthesized. Thermogravimetry and differential thermal analysis (TG/DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration and thermal decomposition of the isolated compounds.  相似文献   

11.
Comparison of A and B starch granules from three wheat varieties   总被引:2,自引:0,他引:2  
Zeng J  Li G  Gao H  Ru Z 《Molecules (Basel, Switzerland)》2011,16(12):10570-10591
Three starches from the wheat varieties AK58, ZM18 and YZ4110 were separated into large (A) and small (B) granules, which were characterized structurally and evaluated for their functional properties. SEM results showed that the size of A-granules from ZM18 and YZ4110 were about the same, but the sizes of A-granules and B-granules from AK58 were larger than those of ZM18 and YZ4110. FTIR spectra showed that all the samples exhibited a similar pattern, with seven main modes with maximum absorbance peaks near 3,500, 3,000, 1,600, 1,400, 1,000, 800, 500 cm-1. The B-granules of ZM18 and YZ4110 had less amylose content, although the difference among the total amylose contents of the three unfractionated starches was not significant. X-ray diffraction (XRD) patterns showed predominantly A-type crystallinity for all the starches. The A-granules showed sharper XRD patterns than the other starches. DSC analysis showed that the A-granules had broader ranges of gelatinization temperatures than the B-granules from the same wheat variety. The gelatinization enthalpy (ΔH) of A-granules was higher than that of B-granules. AK58 exhibited the smallest enthalpy, while ZM18 showed the largest enthalpy. In pasting tests, the A-granule starch of AK58 had higher peak, final and setback viscosity, lower breakdown and pasting temperature, and the B-granule starch and unfractionated starch of AK58 had lower peak, breakdown, final and setback viscosity and higher pasting temperature than ZM18 and YZ4110.  相似文献   

12.
Thermal properties of the single crystals have been investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. The thermodynamic parameters such as activation energy and enthalpy and thermal stability temperature of the samples were calculated from the differential thermal analysis (DTA) and TG data. The activation energies for first peak of DTA curves were found as 496.65 (for Cd–Pd) and 419.37 kJ mol–1 (for Zn–Pd). For second peak, activation energies were calculated 116.56 (for Cd–Pd) and 173.96 kJ mol–1 (for Zn–Pd). The thermal stability temperature values of the Cd–Pd and Zn–Pd compounds at 10°C min–1 heating rate are determined as approximately 220.7 and 203°C, respectively. The TG results suggest that thermal stability of the Cd–Pd complex is higher than that of the Zn–Pd complex.  相似文献   

13.
New poly(azo) amino-chitosan compounds were obtained from the azo coupling reaction of N-benzyl chitosan and diazonium salts. The thermal behavior of these compounds was studied by thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG), TG coupled with a Fourier-transform infrared, and differential scanning calorimetry (DSC). TG/DTG curves of chitin–chitosan polymer showed two thermal events attributed to water loss and decomposition of the polysaccharide after cross-linking reactions. Thermal analysis of the poly(azo) amino-chitosan compounds showed that the decomposition temperatures decreased when compared to the starting chitin–chitosan and N-benzyl chitosan. DSC results showed an agreement with the TG/DTG analyses. Thermal behavior of poly(azo) amino-chitosans suggest that these compounds could be considered as potential thermal sensors.  相似文献   

14.
The applications of digital and analog computers to problems in thermal analysis are reviewed. All of the applications are of a passive type in which there is no significant computer control of the experiment. Techniques discussed include thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), gas evolution analysis (GEA), and mass spectrometric thermal analysis (MTA).  相似文献   

15.
High-density polyethylene/ethylene–acrylic acid copolymer/layered double hydroxides (LDHs) nanocomposites were prepared by the methods of one-step extrusion and twice extrusion in this paper. The structure and properties of the nanocomposites were also studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetry (TG), and the cone calorimeter. The results of XRD, SEM, and TEM analyses demonstrated that the method of twice extrusion gave the LDHs a higher level of exfoliation within the matrix compared with the method of one-step extrusion. The DSC and TG analysis revealed that the crystalline property and the thermal stability of the nanocomposites could be improved by the method of secondary extrusion. The cone calorimeter test showed that the method of secondary extrusion could improve the flame retardant property of the nanocomposites to some degree.  相似文献   

16.
This study aimed to utilize unripe green bananas obtained from those that were graded as unacceptable for export. Bread was selected as the product model for the application of banana flour. As carbohydrates and other functional active compounds make up the main composition of green bananas, unripe banana flour (UBF) was prepared and characterized. The chemical composition, physico-chemical properties, and functional properties of UBF, as well as its application in bread for wheat flour (WF) substitution at different levels, were investigated. Quality attributes of the bread were determined. High carbohydrate (89%), total dietary fiber (7%), ash (2%), potassium content and radical scavenging activity were found in UBF bread, while protein (15%) and fat contents (0.9%) were higher in WF bread (p < 0.05). Starch granules of different sizes and shapes (round, long and oblong) were observed in the starch from UBF bread. Solubility, swelling power, and the water absorption capacity of WF bread were greater than UBF bread (p < 0.05). The gelatinization enthalpy (ΔH) was 0.69 and 5.00 J/g for WF and UBF, respectively. The rapid viscoanalyzer (RVA) pasting profile showed that UBF bread had a higher pasting temperature, peak viscosity, breakdown, and final viscosity than WF bread (p < 0.05). Increasing the level of UBF caused an increase in bread hardness and a decrease in loaf volume (p < 0.05). We show that UBF can be considered a value-added product with health-promoting properties. The utilization of UBF as a functional food ingredient will benefit the consumer.  相似文献   

17.
To provide evidence for previously proposed assumptions concerning starch gelatinization sub-mechanisms, a more detailed investigation was carried out using multiscale analysis of a starch type selected for its marked difference. Tapioca starch was chosen due to its cohesive/springy properties and its growing use in the food industry. Time-domain nuclear magnetic resonance (TD-NMR) was used to investigate the leaching of material, water absorption and crystallite melting in hydrated tapioca starch (45%). The interpretation of T2 mass intensity evolutions, especially those of the (intra- and extra-granular) aqueous phases, was discussed drawing on complementary techniques such as microscopy, Rapid Visco Analyser (RVA), differential scanning calorimetry (DSC) and swelling factor (SF) and solubility index (SI) measurements. Results show that the T2 assignments usually proposed in the literature are dependent on starch origin. The differences in T2 evolutions (value and mass intensity) observed between wheat and tapioca starches at intermediate hydration levels could be linked to the different gelatinization behaviour of tapioca starch involving the latter's higher granule rupture level, higher gelatinization temperature and greater swelling power above its gelatinization temperature.  相似文献   

18.
There are many thermoanalytical techniques but only several of them such as thermogravimetric analysis (TG), high resolution thermogravimetric analysis (Hi-Res™ TG), derivative thermogravimetry (DTG), differential thermal analysis (DTA), calorimetry, differential scanning calorimetry (DSC), modulated differential scanning calorimetry (MDSC), evolved gas analysis (EGA), transient thermal analysis (TTA) and thermal conductivity (k) have selected to be discussed in this paper. Simultaneous thermal analysis (STA) is ideal for investigating issues such as the glass transition of modified glasses, binder burnout, dehydration of ceramic materials or decomposition behaviour of inorganic building materials, also with gas analysis. Selected applications of various thermoanalytical techniques from medicine to construction have also been discussed in this paper.  相似文献   

19.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

20.
Thermal characterization of HCN polymers by TG-MS, TG, DTA and DSC methods   总被引:1,自引:0,他引:1  
This paper presents a thermogravimetry (TG) study of hydrogen cyanide polymers, synthesized from the reaction of equimolar aqueous solutions of sodium cyanide and ammonium chloride. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) were also used to evaluate the thermal behaviour of these black polymers, which play an important role in prebiotic chemistry. A coupled TG-mass spectrometer (MS) system allowed us to analyze the principal volatile thermal decomposition and fragmentation products of the isolated HCN polymers under dynamic conditions and an inert atmosphere. After dehydration, a multi-step decomposition occurred in this particular polymeric system, due to the release of ammonia, hydrogen cyanide (depolymerization reaction), isocyanic acid (or cyanic acid) and formamide; these two latter species allow us identify bond connectivities. Finally, data collected from TG experiments in an oxidative atmosphere showed significant differences at higher temperatures, above 400 °C. According to these results, the different techniques of thermal analysis here applied have demonstrated to be an adequate methodology for the study and characterization of this complex macromolecular system, whose structure remains controversial even today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号