首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quartz-crystal-embedded split Hopkinson pressure bar for soft materials   总被引:7,自引:0,他引:7  
A dynamic experimental technique that is three orders of magnitude as sensitive in stress measurement as a conventional split Hopkinson pressure bar (SHPB) has been developed. Experimental results show that this new method is effective and reliable for determining the dynamic compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths, such as elastomeric materials and foams at high strain rates. The technique is based on a conventional SHPB. Instead of a surface strain gage mounted on the transmission bar, a piezoelectric force transducer was embedded in the middle of the transmission bar of a high-strength aluminum alloy to directly measure the weakly transmitted force profile from a soft specimen. In addition, a pulse-shape technique was used for increasing the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation in the low-impedance and low-strength specimen.  相似文献   

2.
A split Hopkinson bar technique for low-impedance materials   总被引:9,自引:0,他引:9  
An experimental technique that modifies the conventional split Hopkinson pressure bar has been developed for measuring the compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths such as elastomers at high strain rates. A high-strength aluminum alloy was used for the bar materials instead of steel, and the transmission bar was hollow. The lower Young's modulus of the aluminum alloy and the smaller cross-sectional area of the hollow bar increased the amplitude of the transmitted strain signal by an order of magnitude as compared to a conventional steel bar. In addition, a pulse shaper lengthened the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation in the low-impedance specimen. Experimental results show that the high strain rate, compressive stress-strain behavior of an elastomeric material can be determined accurately and reliably using this technique.  相似文献   

3.
软材料的SHPB实验设计   总被引:19,自引:3,他引:19  
通过对SHPB实验中加载波波形进行控制设计 ,实现软材料试样在加载过程中的应力平衡和常应变率加载 ,从而保证SHPB实验的前提条件。采用这种方法研究了两种材料的高应变率本构 ,实验结果表明 :设计的方法是行之有效的。  相似文献   

4.
O.S.Lee  S.H.Kim  Y.H.Han 《实验力学》2006,21(1):51-60
0Introduction Thehighstrainratestress strainresponsesofpolymersandpolymericcompositematerialshave receivedincreasedscientificandindustrialattentioninrecentyears.Polymericmaterialsaresubjected todynamicloadingandhighstrainratedeformationinavarietyofimporta…  相似文献   

5.
High- and low strain-rate compression experiments were conducted on epoxidized soybean oil (ESO)/clay nanocomposites with nanoclay weights of 0%, 5%, and 8%. A pulse-shaped split Hopkinson pressure bar (SHPB) was employed to conduct high strain-rate experiments. The pulse shaping technique ensures nearly constant-strain-rate deformation under dynamically equilibrated stresses in specimens such that accurate stress–strain curves at various high rates were obtained. A MTS 810 hydraulically driven materials testing system was used to obtain low strain-rate stress–strain curves. Strain-rate and nanoclay weight effects on the compressive properties of the nanocomposites were experimentally determined. A phenomenological strain-rate-dependent material model was presented to describe the stress–strain response. The model agrees well with the experimental data at both large and small strains as well as high and low strain rates.  相似文献   

6.
In this study, we developed a long split Hopkinson pressure bar (LSHPB) for mechanically characterizing soft materials at intermediate strain rates. Using a proper pulse shaper, a loading pulse over 3 ms was produced for compression experiments on a PMDI foam material at the strain rates in the order of 10/s. The pulse shaping technique minimized the dispersion effects of stress wave when propagating through such a long bar system. Consistency of stress–strain curves obtained from the LSHPB and an MTS in the same strain rate range shows that a gap currently existing in intermediate strain-rate range is closed by the introduction of the LSHPB.  相似文献   

7.
An integrated experimental technique was developed for high-rate mechanical characterization of 304L stainless steel at elevated temperatures by using a modified split Hopkinson pressure bar (SHPB). A sandwich structure consisting of two platens and the specimen in between was heated before mechanical loading while the bars were maintained at room temperature to eliminate the temperature gradient effect on the wave propagation in the bars. Upon contacting the cold bars, temperature gradients form in the platens, leaving the temperature in specimen constant and uniform. Pulse shaping techniques were employed to maintain constant strain-rate deformation and dynamic stress equilibrium in the specimen. Dynamic compressive stress-strain curves at elevated temperatures for the 304L stainless steel were obtained. To relate recrystallization to impact loading, a momentum trapping system was employed to apply a single loading on the specimen during one dynamic experiment. We also controlled the quenching time to study its effect on recrystallization.  相似文献   

8.
软材料的动态力学性能研究一直备受关注,目前分离式Hopkinson压杆(split Hopkinson pressure bar, SHPB)技术是其最重要的测试手段,然而在测试超软材料时实验装置设计方面仍存在许多有待改进之处。本文中研制了一套双子弹电磁驱动SHPB系统,使用聚碳酸酯作为杆件材料以克服软材料试件带来的诸多困难,引入了双子弹设计方案解决了电磁驱动方式难以应用于非铁磁材料的问题,并有效保证了子弹速度的准确控制。使用双子弹电磁驱动SHPB系统和传统金属SHPB装置同时对硅胶材料的动态力学性能进行了测试,实验结果的吻合性验证了本套系统的可靠性。应用双子弹电磁驱动SHPB系统开展了聚乙烯醇(polyvinyl alcohols, PVA)水凝胶这种超软材料在高应变率下的实验,成功表征出其动态力学性能。  相似文献   

9.
The characterization of soft or low impedance materials is of increasing importance since these materials are commonly used in impact and energy absorbing applications. The increasing role of numerical modeling in understanding impact events requires high-rate material properties, where the mode of loading is predominantly compressive and large deformations may occur at high rates of deformation. The primary challenge in measuring the mechanical properties of soft materials is balancing the competing effects of material impedance, specimen size, and rate of loading. The traditional Split Hopkinson Pressure Bar approach has been enhanced through the implementation of polymeric bars to allow for improved signal to noise ratios and a longer pulse onset to ensure uniform specimen deformation. The Polymeric Split Hopkinson Pressure Bar approach, including the required viscoelastic bar analysis, has been validated using independent measurement techniques including bar-end displacement measurement and high speed video. High deformation rate characterization of 10% and 20% ballistic gelatin, commonly used as a soft tissue simulant, has been undertaken at nominal strain rates ranging from 1,000 to 4,000/s. The mechanical properties of both formulations of gelatin exhibited significant strain rate dependency. The results for 20% gelatin are in good agreement with previously reported values at lower strain rates, and provide important mechanical properties required for this material.  相似文献   

10.
一种用于软材料测试的改进SHPB装置   总被引:4,自引:1,他引:4  
宋力  胡时胜 《实验力学》2004,19(4):448-452
本文提出了一种新的、用于测试橡胶、高弹体及高聚物软泡沫材料动态力学性能的SHPB改进装置。该装置取消了常见的入射杆而采用长杆弹直接撞击试件从而实现了持续的长时间加载,使得在相当大的应变率范围内试件的最大应变在一个加载过程中即可达到。配合该装置采用了瞬态响应优良、分辨率良好的光电式位移测试系统来测量试件的变形;为记录微弱的应变信号,在透射杆中使用了半导体应变片。本方案克服了传统SHPB在测试软材料时由于子弹长度限制带来的加载幅度不足及由于阻抗失配导致的应变信号微弱的困难;与采用高聚物杆的SHPB改进方案相比,本方案的测试结果也更为可靠。在试验装置中还运用了加载整形技术以改善试件中的应力均匀性。从测试结果看,该装置能有效地实现大变形范围、近似恒应变率持续加载以及相应的微弱应变信号的测量。  相似文献   

11.
利用传统分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)实验技术来实现试件在较低应变率下的大变形时,需要使用超长的压杆系统,杆件的加工和实验空间限制了该技术的推广应用。鉴于此,提出一种直撞式霍普金森压杆二次加载实验技术,利用透射杆中的应力波在其末端的准刚性壁反射实现对试件的二次加载,并分析了准刚性质量块尺寸对二次加载的影响规律;采用二点波分离方法对叠加的应力波进行了有效分离和计算,在总长4 m的压杆系统中实现了1.2 ms的长历时加载,并可以准确获得试件的加载应变率曲线和应力应变关系。建立了直撞式霍普金森压杆二次加载有限元模型,数值仿真结果表明,该实验技术能有效地实现试件的二次加载,与超长SHPB系统获得的仿真结果相比较,两者的试件应力应变关系完全一致。利用该技术对1100铝合金材料进行动态压缩实验,实现了其在102 s?1量级应变率下的大变形动态力学性能测试。  相似文献   

12.
The split Hopkinson bar is a reliable experimental technique for measuring high strain rate properties of high-strength materials. Attempts to apply the split Hopkinson bar in measurement on more compliant materials, such as plastics, rubbers and foams, suffer from limitations on the maximum achievable strain and from high noise-to-signal ratios. The present work introduces and all-polymeric split Hopkinson bar (APSHB) experiment, which overcomes these limitations. The proposed method uses polymeric pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials, thus providing both a low noise-to-signal ratio data and a longer input pulse for higher maximum strain. The APSHB requires very careful data reduction procedures because of the viscoelastic behavior of the incident and transmitter pressure bars. High-quality stress-strain data for a variety of compliant materials, such as polycarbonate, polyurethane foam and styrofoam, are presented.  相似文献   

13.
A dynamic bulge testing technique is developed to perform biaxial tests on metals at high strain rates. The main component of the dynamic testing device is a movable bulge cell which is directly mounted on the measuring end of the input bar of a conventional split Hopkinson pressure bar system. The input bar is used to apply and measure the bulging pressure. The experimental system is analyzed in detail and the measurement accuracy is discussed. It is found that bars made of low impedance materials must be used to achieve a satisfactory pressure measurement accuracy. A series of dynamic experiments is performed on aluminum 6111-T4 sheets using viscoelastic nylon bars to demonstrate the capabilities of the proposed experimental technique. The parameters of the rate-dependent Hollomon–Cowper–Symonds J2 plasticity model of the aluminum are determined using an inverse analysis method in conjunction with finite element simulations.  相似文献   

14.
The influence of strain rate, moisture content and loading direction on the stress-strain relationships for spruce wood has been investigated. The strain rates were approximately 8×10−3 s−1, 17s−1 and 1000 s−1, and the states of moisture content were those corresponding to oven dry, fiber saturated and fully saturated. Compressive loads were applied along the principal directions of the stem of the tree, i.e., radially, tangentially and axially. The low and medium strain-rate tests were performed with the aid of a servohydraulic testing machine, while the high strain-rate tests were carried out using the split Hopkinson pressure bar (SHPB) technique. Magnesium or steel bars were used in the different SHPB tests in order to reduce impedance mismatch for the different directions of the wood specimens. The strain rate was found to have large influence on the behavior of the wood, especially under the condition of full saturation, where water transport in the deforming specimen is of major importance.  相似文献   

15.
分离式Hopkinson压杆实验技术研究进展   总被引:6,自引:0,他引:6  
分离式Hopkinson压杆(split Hopkinson pressure bar, SHPB)技术是一种广泛应用于研究材料加载应变率在($10^{2}\sim 10^{4}{\rm s}^{- 1}$)范围内力学响应的实验方法. 在详细介绍Hopkinson, Davies和Kolsky的3篇经典论文的基础上, 从基本理论研究、加载波形控制、复合加载方式以及测试系统改进4个方面详细论述SHPB实验技术的研究进展. 通过分析SHPB实验技术在实际应用中存在的问题, 提出SHPB标准化、拓宽应用范围以及广义SHPB技术是SHPB实验技术研究值得深入探索的方向.  相似文献   

16.
Hopkinson压杆实验技术的应用进展   总被引:20,自引:1,他引:20  
胡时胜 《实验力学》2005,20(4):589-594
SHPB实验装置是研究各类工程材料动态力学性能的最基本实验手段,它不仅可用于测量金属、高聚物等均匀性好、变形量较大材料的冲击压缩(拉伸、剪切、扭转)应力—应变关系,经改进后还可以用于测量质地软、波阻抗小的泡沫介质材料和质地脆、均匀性差的混凝土类材料的冲击压缩应力-应变关系。此外,SHPB实验装置因加载方式简单,加载波形易测易控制,还可以开展混凝土类材料的层裂强度研究,火工品、引信的安全性、可靠性检测,高G值加速度传感器的标定以及炸药材料的压剪起爆临界点的测定等。  相似文献   

17.
18.
对混凝土类材料动态压缩应变率效应研究的发展及问题进行了概述,对比不同应力状态下混凝土类材料动态压缩应变率效应的表现特征,揭示了不同加载路径下实测动态强度提高系数的显著差异。研究表明,在高应变率下,基于初始一维应力加载路径的试件将因横向惯性效应导致的侧向围压而演化至多维应力状态,传统霍普金森杆技术无法获得高应变率下基于真实一维应力路径的动态强度提高系数,在强度模型中直接应用实测数据将过高估计材料的动态强度。鉴于应变率效应的加载路径依赖性,将仅包含应变率的强度提高系数模型扩展至同时计及应变率和应力状态的多维应力状态模型,并结合Drucker-Prager准则在强度模型中给予了实现。针对具有自由和约束边界试件开展的数值霍普金森杆实验表明,多维应力状态下的应变率效应模型可以考虑应变率效应随应力状态改变的特点,从而准确预测该类材料的动态压缩强度。研究结果可为正确应用霍普金森杆技术确定脆性材料的动态压缩强度提供参考。  相似文献   

19.
聚合物材料SHPB实验关键问题   总被引:3,自引:0,他引:3  
分离式霍普金森压杆(SHPB)广泛用于测量聚合物材料在高应变率下的动态力学行为.但是由于聚合物材料本身的低强度、低刚度、低阻抗、低波速等特点,使得SHPB动态试验相比其他材料更加复杂.论文较为详细地综述了聚合物材料SHPB实验技术中的应力应变计算、脉冲整形技术、动态应力平衡、摩擦与惯性效应、试件与波导杆的选择、碰撞速度与应变率关系、最大常应变率的确定等关键问题及其进展.理解这些关键问题并且采用目前较好的方法,对于获得聚合物材料有效和准确的高应变率力学特性具有重要意义.  相似文献   

20.
高温分离式Hopkinson压杆技术及其应用   总被引:1,自引:0,他引:1  
郭伟国 《实验力学》2006,21(4):447-453
本文介绍了在分离式Hopkinson压杆装置上通过使用一种气动同步机构,实现对试样进行高温高应变率加载的技术。利用此技术仅对试样加高温度而保持入射杆和透射杆与试样脱离且处在较低温度,到预定温度时,借助气动同步机构使入射杆、透射杆与试样接触并同时实现对试样加载。利用波形抑制技术,仅对试样实现一次加载,入射杆中的后续二次加载波通过反作用质量块吸收。通过这些技术的结合,1)可以进行材料在高温高应变率下应力应变测试;2)可以测试材料在高应变率不同温度下的等温曲线;3)可以间接对材料的塑性功热转换系数进行测试;4)可以进行不同温度高应变率下的中断跳跃试验等。在文中给出了一些典型的试验曲线和结果,并对测试方法和结果进行了分析讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号