首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of peer entities called decision-making units (DMUs), whose performance is determined based on multiple measures. The traditional DEA, which is based on the concept of efficiency frontier (output frontier), determines the best efficiency score that can be assigned to each DMU. Based on these scores, DMUs are classified into DEA-efficient (optimistic efficient) or DEA-non-efficient (optimistic non-efficient) units, and the DEA-efficient DMUs determine the efficiency frontier. There is a comparable approach which uses the concept of inefficiency frontier (input frontier) for determining the worst relative efficiency score that can be assigned to each DMU. DMUs on the inefficiency frontier are specified as DEA-inefficient or pessimistic inefficient, and those that do not lie on the inefficient frontier, are declared to be DEA-non-inefficient or pessimistic non-inefficient. In this paper, we argue that both relative efficiencies should be considered simultaneously, and any approach that considers only one of them will be biased. For measuring the overall performance of the DMUs, we propose to integrate both efficiencies in the form of an interval, and we call the proposed DEA models for efficiency measurement the bounded DEA models. In this way, the efficiency interval provides the decision maker with all the possible values of efficiency, which reflect various perspectives. A numerical example is presented to illustrate the application of the proposed DEA models.  相似文献   

2.
The objective of the present paper is to propose a novel pair of data envelopment analysis (DEA) models for measurement of relative efficiencies of decision-making units (DMUs) in the presence of non-discretionary factors and imprecise data. Compared to traditional DEA, the proposed interval DEA approach measures the efficiency of each DMU relative to the inefficiency frontier, also called the input frontier, and is called the worst relative efficiency or pessimistic efficiency. On the other hand, in traditional DEA, the efficiency of each DMU is measured relative to the efficiency frontier and is called the best relative efficiency or optimistic efficiency. The pair of proposed interval DEA models takes into account the crisp, ordinal, and interval data, as well as non-discretionary factors, simultaneously for measurement of relative efficiencies of DMUs. Two numeric examples will be provided to illustrate the applicability of the interval DEA models.  相似文献   

3.
Efficiency is a relative measure because it can be measured within different ranges. The traditional data envelopment analysis (DEA) measures the efficiencies of decision-making units (DMUs) within the range of less than or equal to one. The corresponding efficiencies are referred to as the best relative efficiencies, which measure the best performances of DMUs and determine an efficiency frontier. If the efficiencies are measured within the range of greater than or equal to one, then the worst relative efficiencies can be used to measure the worst performances of DMUs and determine an inefficiency frontier. In this paper, the efficiencies of DMUs are measured within the range of an interval, whose upper bound is set to one and the lower bound is determined through introducing a virtual anti-ideal DMU, whose performance is definitely inferior to any DMUs. The efficiencies turn out to be all intervals and are thus referred to as interval efficiencies, which combine the best and the worst relative efficiencies in a reasonable manner to give an overall measurement and assessment of the performances of DMUs. The new DEA model with the upper and lower bounds on efficiencies is referred to as bounded DEA model, which can incorporate decision maker (DM) or assessor's preference information on input and output weights. A Hurwicz criterion approach is introduced and utilized to compare and rank the interval efficiencies of DMUs and a numerical example is examined using the proposed bounded DEA model to show its potential application and validity.  相似文献   

4.
在传统的DEA模型中,不论是最优相对效率模型或者最差相对效率模型,它们研究投影问题都是在不同的约束域内进行的,得出的结论都有一定的片面性.在bounded DEA模型中,决策单元的效率计算是在一个区间内进行的,可以同时研究非DEA有效的决策单元在有效前沿面上的投影和非DEA无效的决策单元在DEA无效面上的投影,得出的结论更加科学合理,并以定理的形式给出了投影结果的表达式.通过一个实例将投影结果与传统模型中得出的投影结果进行了比较,发现bounded DEA模型得到的投影结果对实际的生产具有更强的指导意义.  相似文献   

5.
Efficiency could be not only the ratio of weighted sum of outputs to that of inputs but also that of weighted sum of inputs to that of outputs. When the previous efficiency measures the best relative efficiency within the range of no more than one, the decision-making units (DMUs) who get the optimum value of one perform best among all the DMUs. If the previous efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform worst among all the DMUs. When the later efficiency is measured within the range of no more than one, the DMUs who get the optimum value of one perform worst among all the DMUs. If the later efficiency is measured within the range of no less than one, the DMUs who get the optimum value of one perform best among all the DMUs. This paper mainly studies an interval DEA model with later efficiency, in which efficiency is measured within the range of an interval, whose upper bound is set to one and the lower bound is determined by introducing a virtual ideal DMU, whose performance is definitely superior to any DMUs. The efficiencies, obtained from interval DEA model, turn out to be all intervals and are referred to as interval efficiencies, which combine the best and the worst relative efficiency in a reasonable manner to give an overall assessment of performances for all DMUs. Assessor's preference information on input and output weights is also incorporated into interval DEA model reasonably and conveniently. Through an example, some differences are found from the ranking results obtained from interval DEA model and bounded DEA model using the Hurwicz criterion approach to rank the interval efficiencies.  相似文献   

6.
The purpose of this paper is to develop a new DEA with an interval efficiency. An original DEA model is to evaluate each DMU optimistically. There is another model called “Inverted DEA” to evaluate each DMU pessimistically. But, there are no relations essentially between DEA and inverted DEA. Thus, we formulate a DEA model with an interval efficiency which consists of efficiencies obtained from the optimistic and pessimistic viewpoints. Thus, two end points can construct an interval efficiency. With the same idea, we deal with the interval inefficiency model which is inverse to interval efficiency. Finally, we extend the proposed DEA model to interval data and fuzzy data.  相似文献   

7.
Data envelopment analysis (DEA) is a popular technique for measuring the relative efficiency of a set of decision making units (DMUs). Fully ranking DMUs is a traditional and important topic in DEA. In various types of ranking methods, cross efficiency method receives much attention from researchers because it evaluates DMUs by using self and peer evaluation. However, cross efficiency score is usual nonuniqueness. This paper combines the DEA and analytic hierarchy process (AHP) to fully rank the DMUs that considers all possible cross efficiencies of a DMU with respect to all the other DMUs. We firstly measure the interval cross efficiency of each DMU. Based on the interval cross efficiency, relative efficiency pairwise comparison between each pair of DMUs is used to construct interval multiplicative preference relations (IMPRs). To obtain the consistency ranking order, a method to derive consistent IMPRs is developed. After that, the full ranking order of DMUs from completely consistent IMPRs is derived. It is worth noting that our DEA/AHP approach not only avoids overestimation of DMUs’ efficiency by only self-evaluation, but also eliminates the subjectivity of pairwise comparison between DMUs in AHP. Finally, a real example is offered to illustrate the feasibility and practicality of the proposed procedure.  相似文献   

8.

Supply chain performance evaluation problems are evaluated using data envelopment analysis. This paper proposes a fuzzy network epsilon-based data envelopment analysis for supply chain performance evaluation. In the common data envelopment analysis models which are used for evaluation of decision-maker units efficiency, there are several inputs and outputs. One of the bugs of such models is that the intermediate products and linking activities are overlooked. Considering these intermediate activities and products, the current study evaluates the performance of decision-maker units in an automotive supply chain. There are ten decision-maker units in the supply chain in which there are three suppliers, two manufacturers, two distributors, and four customers. Moreover, the overall efficiency of input-oriented (input-based) model and input-oriented divisional efficiency are calculated. In order to improve the efficiencies, the projections onto the frontiers are obtained by using the outputs of the solved model and Lingo software. In order to show the applicability of the proposed model, it is applied on automotive industry, as a case study, to evaluate supply chain performance. Then, the overall efficiencies of DMUs and each sections (divisions) of DMUs were calculated separately. Therefore, every organization can apply this evaluation method for improving the performance of alternative factors.

  相似文献   

9.
We improve the efficiency interval of a DMU by adjusting its given inputs and outputs. The Interval DEA model has been formulated to obtain an efficiency interval consisting of evaluations from both the optimistic and pessimistic viewpoints. DMUs which are not rated as efficient in the conventional sense are improved so that their lower bounds become as large as possible under the condition that their upper bounds attain the maximum value one. The adjusted inputs and outputs keep each other balanced by improving the lower bound of efficiency interval, since the lower bound becomes small if all the inputs and outputs are not proportioned. In order to improve the lower bound of efficiency interval, different target points are defined for different DMUs. The target point can be regarded as a kind of benchmark for the DMU. First, a new approach to improvement by adjusting only outputs or inputs is proposed. Then, the combined approach to improvement by adjusting both inputs and outputs simultaneously is proposed. Lastly, numerical examples are shown to illustrate our proposed approaches.  相似文献   

10.
针对传统区间数据包络分析方法,在确定每一个决策单元区间效率的上界和下界时,存在的评价尺度不一致且计算复杂等问题,本文提出了一种同时最大化所有决策单元的效率上界和下界的公共权重区间DEA模型,并给出了一种考虑决策者偏好信息的可能度排序方法,用以解决区间效率的全排序问题。最后,以中国大陆11个沿海省份工业生产效率测算为例说明了所提方法的有效性和实用性。  相似文献   

11.
The increasing intensity of global competition has led organizations to utilize various types of performance measurement tools for improving the quality of their products and services. Data envelopment analysis (DEA) is a methodology for evaluating and measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. All the data in the conventional DEA with input and/or output ratios assumes the form of crisp numbers. However, the observed values of data in real-world problems are sometimes expressed as interval ratios. In this paper, we propose two new models: general and multiplicative non-parametric ratio models for DEA problems with interval data. The contributions of this paper are fourfold: (1) we consider input and output data expressed as interval ratios in DEA; (2) we address the gap in DEA literature for problems not suitable or difficult to model with crisp values; (3) we propose two new DEA models for evaluating the relative efficiencies of DMUs with interval ratios, and (4) we present a case study involving 20 banks with three interval ratios to demonstrate the applicability and efficacy of the proposed models where the traditional indicators are mostly financial ratios.  相似文献   

12.
Network DEA: A slacks-based measure approach   总被引:2,自引:0,他引:2  
Traditional DEA models deal with measurements of relative efficiency of DMUs regarding multiple-inputs vs. multiple-outputs. One of the drawbacks of these models is the neglect of intermediate products or linking activities. After pointing out needs for inclusion of them to DEA models, we propose a slacks-based network DEA model, called Network SBM, that can deal with intermediate products formally. Using this model we can evaluate divisional efficiencies along with the overall efficiency of decision making units (DMUs).  相似文献   

13.
Data envelopment analysis (DEA) is a useful tool for efficiency measurement of firms and organizations. Many production systems in the real world are composed of two processes connected in series. Measuring the system efficiency without taking the operation of each process into consideration will obtain misleading results. Two-stage DEA models show the performance of individual processes, thus is more informative than the conventional one-stage models for making decisions. When input and output data are fuzzy numbers, the derived efficiencies become fuzzy as well. This paper proposes a method to rank the fuzzy efficiencies when the exact membership functions of the overall efficiencies derived from fuzzy two-stage model are unknown. By incorporating the fuzzy two-stage model with the fuzzy number ranking method, a pair of nonlinear program is formulated to rank the fuzzy overall efficiency scores of DMUs. Solving the pair of nonlinear programs determines the efficiency rankings. An example of the ranking of the 24 non-life assurance companies in Taiwan is illustrated to explain how the proposed method is applied.  相似文献   

14.
《Optimization》2012,61(11):2441-2454
Inverse data envelopment analysis (InDEA) is a well-known approach for short-term forecasting of a given decision-making unit (DMU). The conventional InDEA models use the production possibility set (PPS) that is composed of an evaluated DMU with current inputs and outputs. In this paper, we replace the fluctuated DMU with a modified DMU involving renewal inputs and outputs in the PPS since the DMU with current data cannot be allowed to establish the new PPS. Besides, the classical DEA models such as InDEA are assumed to consider perfect knowledge of the input and output values but in numerous situations, this assumption may not be realistic. The observed values of the data in these situations can sometimes be defined as interval numbers instead of crisp numbers. Here, we extend the InDEA model to interval data for evaluating the relative efficiency of DMUs. The proposed models determine the lower and upper bounds of the inputs of a given DMU separately when its interval outputs are changed in the performance analysis process. We aim to remain the current interval efficiency of a considered DMU and the interval efficiencies of the remaining DMUs fixed or even improve compared with the current interval efficiencies.  相似文献   

15.
A characteristic of traditional DEA CCR mode is that it allows DMUs to measure their maximum efficiency score with the most favorable weights. Thus, it would have some shortcomings, for example, the efficiencies of different DMUs obtained by different sets of weights may be unable to be compared and ranked on the same basis. Besides, there are always more than one DMU to be evaluated as efficient because of the flexibility in the selection of weights; it would cause the situation that all DMUs cannot be fully discriminated. With the research gaps, in this paper, we propose two models considering ideal and anti-ideal DMU to generate common weights for performance evaluation and ranking. Finally, two examples of Asian lead frame firms and flexible manufacturing systems are illustrated to examine the validity of the proposed methods.  相似文献   

16.
Data envelopment analysis (DEA) is a technique for evaluating relative efficiencies of peer decision making units (DMUs) which have multiple performance measures. These performance measures have to be classified as either inputs or outputs in DEA. DEA assumes that higher output levels and/or lower input levels indicate better performance. This study is motivated by the fact that there are performance measures (or factors) that cannot be classified as an input or output, because they have target levels with which all DMUs strive to achieve in order to attain the best practice, and any deviations from the target levels are not desirable and may indicate inefficiency. We show how such performance measures with target levels can be incorporated in DEA. We formulate a new production possibility set by extending the standard DEA production possibility set under variable returns-to-scale assumption based on a set of axiomatic properties postulated to suit the case of targeted factors. We develop three efficiency measures by extending the standard radial, slacks-based, and Nerlove–Luenberger measures. We illustrate the proposed model and efficiency measures by applying them to the efficiency evaluation of 36 US universities.  相似文献   

17.
在传统的DEA模型中,最优相对效率模型是在不大于1的范围内研究决策单元的效率的,最差相对效率模型是在不小于1的范围内研究决策单元的效率,这两种模型在研究投影问题时,是在不同的范围内进行的,有一定的片面性.将在interval DEA模型中,研究决策单元的投影问题,该模型是在相同的约束域内研究最优和最差相对效率模型,得出的结论将更加全面,通过两个定理给出了非DEA有效的决策单元在DEA有效面上的投影表达式和非DEA无效的决策单元在DEA无效面上的投影表达式.同时,通过一个实例对决策单元在interval DEA模型中的投影结果与在传统的DEA模型的投影结果进行了比较,发现投影结果比传统模型得到的投影结果对实际的生产有更强的指导意义.  相似文献   

18.
《Applied Mathematical Modelling》2014,38(7-8):2028-2036
Conventional DEA models assume deterministic, precise and non-negative data for input and output observations. However, real applications may be characterized by observations that are given in form of intervals and include negative numbers. For instance, the consumption of electricity in decentralized energy resources may be either negative or positive, depending on the heat consumption. Likewise, the heat losses in distribution networks may be within a certain range, depending on e.g. external temperature and real-time outtake. Complementing earlier work separately addressing the two problems; interval data and negative data; we propose a comprehensive evaluation process for measuring the relative efficiencies of a set of DMUs in DEA. In our general formulation, the intervals may contain upper or lower bounds with different signs. The proposed method determines upper and lower bounds for the technical efficiency through the limits of the intervals after decomposition. Based on the interval scores, DMUs are then classified into three classes, namely, the strictly efficient, weakly efficient and inefficient. An intuitive ranking approach is presented for the respective classes. The approach is demonstrated through an application to the evaluation of bank branches.  相似文献   

19.
This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses. It is shown that super-efficiency score can be decomposed into two data perturbation components of a particular test frontier decision making unit (DMU) and the remaining DMUs. As a result, DEA sensitivity analysis can be done in (1) a general situation where data for a test DMU and data for the remaining DMUs are allowed to vary simultaneously and unequally and (2) the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. The sensitivity analysis approach developed in this paper can be applied to DMUs on the entire frontier and to all basic DEA models. Necessary and sufficient conditions for preserving a DMU’s efficiency classification are developed when various data changes are applied to all DMUs. Possible infeasibility of super-efficiency DEA models is only associated with extreme-efficient DMUs and indicates efficiency stability to data perturbations in all DMUs.  相似文献   

20.
制造过程评价是改善制造系统效率的重要一环,传统的评价方法将每个制造系统决策单元视为黑箱来研究整体效率,忽略了中间产品转化信息及投入要素在各子过程中的配置信息。针对两阶段(第二阶段有外源性新投入)制造系统的效率评估问题,分别在固定规模报酬和可变规模报酬假设下,充分利用制造系统中间产品的转化及外源投入要素的配置信息,建立了制造系统网络DEA效率测度及分解模型,建模方法遵循客观评价原则,无需事先主观确定子效率和系统效率之间的组合关系。并将其应用于钢铁制造系统效率测度与分解,研究结果表明该方法能够挖掘决策单元内部子单元的效率情况,帮助决策者发现复杂制造过程非有效的根源,为复杂制造过程的整体效率测度及分解提供了有效的分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号